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Super-quadratic distance problems

Given a simple undirected graph G on n vertices and m edges,
and the corrsponding shortest-path metric,
e Diameter
Find the maximum distance among vertices
e Eccentricites
For each vertex v find the minimum radius of ball at v that
covers G.
e Distance Oracle
Create a data structure, that, when given a pair of points,
returns their distance in O(1) time.
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Super-quadratic distance problems

Given a simple undirected graph GG on n vertices and m edges,
and the corrsponding shortest-path metric,
e Diameter
Find the maximum distance among vertices
e Eccentricites
For each vertex v find the minimum radius of ball at v that
covers G.
e Distance Oracle
Create a data structure, that, when given a pair of points,
returns their distance in O(1) time.

General: weighted O(mn), unweighted O(n“ logn)
Sparse graphs: O(n?)

Lower bound by Roditty and V. Williams (2013):
No O(n?~¢) algo to decide diameter 2 vs 3 in sparse graphs under SETH.
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SotA sub-quadratic diameter computation

First breakthrough: N
Cabello '18, Gawrychowski et al. '21: diameter of planar graphs in O(n?/3)

K-minor-free graphs: O(n2~1/(32=1)) [DHV22, LW24]

Graphs of(distance VC-dimension)d: O(Dmn!~1/¢) [DHV22, DKP24]
graph param., def later

Axis-parallel unit squares: O(Dn"/4) [DKP24]
Unit disk graphs with +2 additive error: O(n2~1/18) [CGL24]

Q(n*~¢) lower bound for many intersection graphs [BKKNP22]:
Unit balls, axis-aligned unit cubes, unit segments, etc.

Is there a subquadratic algorithm
for diameter in unit disk graphs?




Results: Subquadratic algorithms for diameter

graph class best previous new
planar o(n°/?) [Cab18, GKM™21]

K,-minor-free O(n%~1/Gh=1)y [DHV22, IW24] O(n?1/(2h=2))
VC-dim.-bounded | O(min{Dmn'~'¢, mn}) [DHV22, DKP24] O(mn!~1/(24))
............... umtsquare 5(mm{Dn7/4,n2})DKp24]O*(n2—1/8)
arbitrary square O(n?) [CS19] O(n*"1/12)

unit disk O(n?,/ 2E28) CS16] o)
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Results: Subquadratic algorithms for diameter

graph class best previous new
planar o(n°/?) [Cab18, GKM™21]

K,-minor-free O(n%~1/Gh=1)y [DHV22, IW24] O(n?1/(2h=2))
VC-dim.-bounded | O(min{Dmn'"Y?, mn}) [DHV22, DKP24] O(mn!~1/(2d))
............... umtsquare 5(mm{Dn7/4’n2})DKp24]O*(n2—1/8)
arbitrary square O(n?) [CS19] O(n*"1/12)

unit disk O(n? 4/ “E2E2) CS16] o)

e \We don't need separators!
e More efficient ball growing process based on very simple LDD

e New data structures and ideas for geom. intersection graphs
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Good implicit representation via stabbing paths?

Diameter < D iff all balls in NP := {NP(v) | v € G} cover V(G).
Strategy: grow balls to compute all balls N' = NT.

Issue: Enumerating all balls takes O(n?) time. With O(n)-time BFS: O(n?).

We need an implicit representation for the balls.

Implicit representation of disks via geometric stabbing path:

R R R R NI
(recall segment tree)

A stabbing path of G is any complete ordering A\ of V (G).
To represent X C V(G), list its elements as intervals of A (denoted: Rep, (X))

We want subquadratic representation in amortized sense:

D [Rep,(X)| = O(n').
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Distance VC dimension in graphs

Given a set family X over universe V', the set A C V is shattered by X if:
forall S C Athereis X e Xst. XNA=S.

i.e., X can carve out every subset of A.

The VC dimension of X is the maximum |A| such that A is shattered by X.

small VC-dimension ~ samples give a faithful represnetation

: o
E.g. V =R? X =halfplanes — VC-dim: d = 3. ¢
O o @
‘ o

GG := undirected unweighted graph, N"(v) = ball of radius r at v € V(G).

The distance VC-dimension d of G is the VC dimension of N :=J N7 (v).



Stabbing paths and VC-dimension

Lemma (Informal)
Given* a set system (V, ) of VC-dimension** d we can construct a stabbing
path X\ in O(n'*1/4) time such that with high*** probability:

D> [Repy(S)| = O(N|n'~1/4)

i XeN
Constructed via recursive sampling.
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Stabbing paths and VC-dimension

Lemma (Informal)
Given* a set system (V, ) of VC-dimension** d we can construct a stabbing
path X\ in O(n'*1/4) time such that with high*** probability:

Y IRep,(S)| = O(IN|n' /%)
i XeN
Constructed via recursive sampling.

For implicit representations, we need:

1. VC-dimension bound v
2. Small ball system A of size O(n!'T1/4=9-01) Coming up next

Theorem [KZ25]
K;,-minor free graphs have distance VC dimension at most A — 1.

Theorem (adapted from [CGL24])
Intersection graphs of pseudo-disks have distance VC dimension at most 4.

(B, (&L, ‘
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Generic framework: LDD + ball growing

Step 1. Fix A, decompose G into O(n/A) pieces P of (strong) diameter < A
s.t. total boundary is small: ), |0P| = O(n/A).
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s.t. total boundary is small: >, |0P| = O(n/A).

Step 2. Run BFS from each boundary vertex v € | J, 0P, obtaining also ecc(v).

Set rp := max ecc(v).
vedP

By triangle-ineq:
distg(sp,t) — A < distg(s,t) < distg(sp,t)+ A

= dist(sp,ts) > rp — 2A

The relevant region of P is
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Generic framework: LDD + ball growing

Step 1. Fix A, decompose G into O(n/A) pieces P of (strong) diameter < A
s.t. total boundary is small: >, |0P| = O(n/A).

Step 2. Run BFS from each boundary vertex v € | J, 0P, obtaining also ecc(v).

Set rp := max ecc(v).
vedP

By triangle-ineq:
distg(sp,t) — A < distg(s,t) < distg(sp,t)+ A

= dist(sp,ts) > rp — 2A

The relevant region of P is
Rp = {?} cG ‘ diStg(Sp,?}) > rp — QA}

The modified r-ball of s € P is N"(s) := N"(s) N Rp. Let N := {N7(s)},.s.

Lemma
The modified ball system N has the same VC-dim as A and |[N| = O(An)

Step 3. Compute stabbing path X for N.
For each P and each s € P, fromr=rp—-—3A—-1tor=7rp+ A,
compute Rep, (N"(s)).
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Efficient ball growing?

itep 3. Compute stabbing path \ for V.
For each P and each s € P, fromr=rp —3A —1tor=rp+ A,

compute Rep, (N"(s)).
Goal: Given Rep, (N7 (v)) for all v € V(G), compute Repy (N™1(s))
Repx(ﬁrﬂ(s)) = U Repy(N"(v))

< vEN(s)
Can be done directly in sparse graphs

as |N(s)| is (amortized) small
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Given set of objects O, each associated with some integer intervals of [1 : n],

design a data structure that:
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that intersect gq.
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Goal: Given Rep, (N7 (v)) for all v € V(G), compute Repy (N™1(s))
Repx(ﬁrﬂ(s)) = U Repy(N"(v))

< vEN(s)
Can be done directly in sparse graphs

as |N(s)| is (amortized) small

In dense graphs, we need to solve:

Interval Searching
Given set of objects O, each associated with some integer intervals of [1 : n],

design a data structure that:
for query ¢ € O returns the union of the representations of the objects 0 € O

that intersect gq.

~

We need*: O(input size) preprocessing and 5(output size) query time
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Data strucutre problem reductions

DSP1: Interval Searching
Given set of objects O, each associated with some integer intervals of [1 : n],

design a data structure that:
for query ¢ € O returns the union of the representations of the objects 0 € O

that intersect g.
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Data strucutre problem reductions

DSP1: Interval Searching

Given set of objects O, each associated with some integer intervals of [1 : n],
design a data structure that:

for query ¢ € O returns the union of the representations of the objects 0 € O
that intersect g.

‘ Reduction with polylog preprocessing and query overhead

DSP2: Interval Cover
Given objects O and I : O — [1 : n|, design a data structure that:
for query g € O decides if the union of {I(0) | 0 € O intersects q} covers I(q).
Hard and non-decomposable range searching...
l ~ Reduction with n°) preprocessing and query overhead
Slice into blocks of size b.

DSP3: Rainbow colored intersection searching
Given objects O and C' : O — |n] (color), design a data structure that:
for query ¢ € O decides if all colors appear in {C(0) | 0 € O intersects ¢}.

Theorem
If we can construct in O(|Og¢|) time a data structure Dgo with O(1) query for
DSP3, then for any b € [1,n], we can construct a data structure for DSP2 with

total run time O(N;¢ - b+ L /b). ,
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Data structure for squares

Rainbow colored intersection searching
Given squares O and coloring C': O — [n], design a data structure that:
given square ¢ € O decides if all colors appear in {C(0) | 0 € O intersects ¢}.

A Z
(x(b yq) Y
® 21,

(Ts,Ys)

<

s = (a:Sa Ys, _'rs)

27

Rough idea:
e ¢ has intersection with color class i iff ¢ is above lower envelope of color-i cones.
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Data structure for squares

Rainbow colored intersection searching
Given squares O and coloring C : O — |n], design a data structure that:
given square ¢ € O decides if all colors appear in {C(0) | 0 € O intersects ¢}.

A Z
(74> Yq) i
® 21,

®
(7s,Ys)
- 2Ts > g = (333, Ys, _Ts)
Rough idea:

e ¢ has intersection with color class i iff ¢ is above lower envelope of color-i cones.
e for each color class, compute lower envelope of cones
e slice the space above lower envelope into pw disjoint slabs of fixed directions

e build (reverse) range counting data structure on all slabs
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Stabbing path X gives:
rp+A

ZZ Z IRep, (N"[s])| = O(A-n?>~Y4) = O(A - n™/*)

P sePr=rp—2A

The total length of all the intervals for s € P is at most 2|P|- |Rp| = O(|P| - n).
Ball growing running time for fixed P, r:

~
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Running time analysis for squares

Stabbing path X gives:
rp+A

ZZ Z ’RepA(NT[SD‘ — 5(A-n2_1/d):6(A.n7/4) (d = 4)

P sePr=rp—2A

The total length of all the intervals for s € P is at most 2|P|- |Rp| = O(|P| - n).
Ball growing running time for fixed P, r:

~

O(b- > (IRepa, (N [s])| + [Reps . (N [s])]) + [Pln/b)

seP

BFSes on 0P Constructing A

! R
O*/a+nH)+3 S 0 (b- ™ ((Repy, (V" ![s])| + [Rep, . (N"[s])[) + Pl

P r=rp—2A seP

= O(n*/A+n*) +O0bA -n"*) + O(m*A/b) (d=4)

~

— O(n* Y*®). (for optimal choices of b = A? and A = n'/'%)
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Unit disks: types, resamples

Base data strucutre problem is related to Hopcroft's problem, Q(nl/?’) query time likely.
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Base data strucutre problem is related to Hopcroft's problem, Q(nl/?’) query time likely.
ldea: split into O(1)
modulo classes.

SN

Pseudolines

Technical difficulties:

e The intermediate sets are no longer neighborhood balls (new set system).
— Fortunately VC-dimension is still < 4, but only for fixed radius r.

e Need new stabbing path & representations for each r (and each P)

e Need to work with balls from two or three different types.
— Fortunately, the combined set systems still have VC-dimension < 8.

e Switching stabbing paths is too costly if pieces are small.
— Work only with pieces larger than a threshold; for small pieces, we switch
to a different algo (based on distance compression)
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Ongoing work, a conjecture, and open problems

VC-dim d + efficient interval cover DS
s O(n?~7(@) diameter computation/distance oracle
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Ongoing work, a conjecture, and open problems

VC-dim d + efficient interval cover DS
s O(n?~f(4)) diameter computation/distance oracle

Work in progress:
e O(n*3) for DIAMETER-2 in UDG
e Subquadratic algo for DIAMETER-2 and DIAMETER-3 of unit cubes in R?.

e Algorithms/hardness for DIAMETER-k in intersection graphs.
Sometimes d = g(k), gives O(n?~/(*)) diameter algo

(Very bold) Conjecture
There is some f(d) > 0 such that if G is a (nice?) graph class with distance
VC-dim< d, then there is a O(n?~f(4)) time algorithm for diameter.

Open:
?1 disk graphs

(needs data strucutre breakthrough)?
?2 Super-linear fine-grained lower bounds?

DIAMETER-2 for disks or radii [1,1 4 ¢|?

Thanks for listening!
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graph class best previous new
planar O(n/3) [Cab18, GKM*21]
Kj,-minor-free O(n?1/Gh=1)) [DHV22, IW24] O(n2~1/h=2)
_ VC-dim.-bounded | O(min{Dmn'~"4, mn}) [DHV22, DKP24] O(mnt~1/(d)
Diameter: unit square | O(min{pn?/, n2y)  [okP24] oy
arbitrary square 0(n?) [CS19] O(n2112)
unit disk o(n? 1olg01;§n) [CS16] 0*(n2"1/18)
graph class best previous new

planar | n3/2+°() pl+o() [CGL+23]§
K,-minor-free | O(n*V/Gh—1))  [Lw24] :

Distance oracle . ;
VC-dim.-bounded | O(mn), O(n?) folklore : O(mn!~1/(4d+1)

(construction time/space) e A
Q 5(1) unit square O(n?) [CS19] | O*(n?V1®)
uery: . ? o
y arbitrary square O(nz) [CS19] O(nz—l/zo)
unit disk | O(n?/ &%) [CS16] 0*(n2-1/29)

logn



