
1

Helsinki Algorithms and Theory Days 2025

Subquadratic diameter computation
in graphs of bounded VC-dimension

Timothy Chan, Hsien-Chih Chang, Jie Gao, Hung Le,
Sándor Kisfaludi-Bak, Da Wei Zheng

2

Super-quadratic distance problems

Given a simple undirected graph G on n vertices and m edges,
and the corrsponding shortest-path metric,
• Diameter

Find the maximum distance among vertices
• Eccentricites

For each vertex v find the minimum radius of ball at v that
covers G.

• Distance Oracle
Create a data structure, that, when given a pair of points,
returns their distance in Õ(1) time.

2

Super-quadratic distance problems

Given a simple undirected graph G on n vertices and m edges,
and the corrsponding shortest-path metric,
• Diameter

Find the maximum distance among vertices
• Eccentricites

For each vertex v find the minimum radius of ball at v that
covers G.

• Distance Oracle
Create a data structure, that, when given a pair of points,
returns their distance in Õ(1) time.

2

Super-quadratic distance problems

Given a simple undirected graph G on n vertices and m edges,
and the corrsponding shortest-path metric,
• Diameter

Find the maximum distance among vertices
• Eccentricites

For each vertex v find the minimum radius of ball at v that
covers G.

• Distance Oracle
Create a data structure, that, when given a pair of points,
returns their distance in Õ(1) time.

General: weighted O(mn), unweighted O(nω log n)
Sparse graphs: O(n2)

2

Super-quadratic distance problems

Given a simple undirected graph G on n vertices and m edges,
and the corrsponding shortest-path metric,
• Diameter

Find the maximum distance among vertices
• Eccentricites

For each vertex v find the minimum radius of ball at v that
covers G.

• Distance Oracle
Create a data structure, that, when given a pair of points,
returns their distance in Õ(1) time.

General: weighted O(mn), unweighted O(nω log n)
Sparse graphs: O(n2)

Lower bound by Roditty and V. Williams (2013):
No O(n2−ε) algo to decide diameter 2 vs 3 in sparse graphs under SETH.

3

SotA sub-quadratic diameter computation

First breakthrough:
Cabello ’18, Gawrychowski et al. ’21: diameter of planar graphs in Õ(n5/3)

3

SotA sub-quadratic diameter computation

First breakthrough:
Cabello ’18, Gawrychowski et al. ’21: diameter of planar graphs in Õ(n5/3)

Kh-minor-free graphs: Õ(n2−1/(3h−1)) [DHV22, LW24]
Graphs of distance VC-dimension d: Õ(Dmn1−1/d) [DHV22, DKP24]

diametergraph param., def later

3

SotA sub-quadratic diameter computation

First breakthrough:
Cabello ’18, Gawrychowski et al. ’21: diameter of planar graphs in Õ(n5/3)

Kh-minor-free graphs: Õ(n2−1/(3h−1)) [DHV22, LW24]
Graphs of distance VC-dimension d: Õ(Dmn1−1/d) [DHV22, DKP24]

diameter

Axis-parallel unit squares: O(Dn7/4) [DKP24]
Unit disk graphs with +2 additive error: Õ(n2−1/18) [CGL24]

graph param., def later

3

SotA sub-quadratic diameter computation

First breakthrough:
Cabello ’18, Gawrychowski et al. ’21: diameter of planar graphs in Õ(n5/3)

Kh-minor-free graphs: Õ(n2−1/(3h−1)) [DHV22, LW24]
Graphs of distance VC-dimension d: Õ(Dmn1−1/d) [DHV22, DKP24]

diameter

Axis-parallel unit squares: O(Dn7/4) [DKP24]
Unit disk graphs with +2 additive error: Õ(n2−1/18) [CGL24]

Ω(n2−ε) lower bound for many intersection graphs [BKKNP22]:
Unit balls, axis-aligned unit cubes, unit segments, etc.

graph param., def later

3

SotA sub-quadratic diameter computation

First breakthrough:
Cabello ’18, Gawrychowski et al. ’21: diameter of planar graphs in Õ(n5/3)

Kh-minor-free graphs: Õ(n2−1/(3h−1)) [DHV22, LW24]
Graphs of distance VC-dimension d: Õ(Dmn1−1/d) [DHV22, DKP24]

diameter

Axis-parallel unit squares: O(Dn7/4) [DKP24]
Unit disk graphs with +2 additive error: Õ(n2−1/18) [CGL24]

Is there a subquadratic algorithm
for diameter in unit disk graphs?

Ω(n2−ε) lower bound for many intersection graphs [BKKNP22]:
Unit balls, axis-aligned unit cubes, unit segments, etc.

graph param., def later

4

Results: Subquadratic algorithms for diameter

4

Results: Subquadratic algorithms for diameter

• We don’t need separators!

• More efficient ball growing process based on very simple LDD

• New data structures and ideas for geom. intersection graphs

5

Implicit representations

6

Good implicit representation via stabbing paths?

Diameter ≤ D iff all balls in ND := {ND(v) | v ∈ G} cover V (G).
Strategy: grow balls to compute all balls N =

⋃
r N r.

6

Good implicit representation via stabbing paths?

Diameter ≤ D iff all balls in ND := {ND(v) | v ∈ G} cover V (G).
Strategy: grow balls to compute all balls N =

⋃
r N r.

Issue: Enumerating all balls takes O(n3) time. With O(n)-time BFS: O(n2).

6

Good implicit representation via stabbing paths?

Diameter ≤ D iff all balls in ND := {ND(v) | v ∈ G} cover V (G).
Strategy: grow balls to compute all balls N =

⋃
r N r.

We need an implicit representation for the balls.

Implicit representation of disks via geometric stabbing path:

(recall segment tree)

Issue: Enumerating all balls takes O(n3) time. With O(n)-time BFS: O(n2).

6

Good implicit representation via stabbing paths?

Diameter ≤ D iff all balls in ND := {ND(v) | v ∈ G} cover V (G).
Strategy: grow balls to compute all balls N =

⋃
r N r.

We need an implicit representation for the balls.

Implicit representation of disks via geometric stabbing path:

(recall segment tree)

A stabbing path of G is any complete ordering λ of V (G).
To represent X ⊂ V (G), list its elements as intervals of λ (denoted: Repλ(X))

Issue: Enumerating all balls takes O(n3) time. With O(n)-time BFS: O(n2).

6

Good implicit representation via stabbing paths?

Diameter ≤ D iff all balls in ND := {ND(v) | v ∈ G} cover V (G).
Strategy: grow balls to compute all balls N =

⋃
r N r.

We need an implicit representation for the balls.

Implicit representation of disks via geometric stabbing path:

(recall segment tree)

We want subquadratic representation in amortized sense:∑
X∈N

|Repλ(X)| = O(n1.999).

A stabbing path of G is any complete ordering λ of V (G).
To represent X ⊂ V (G), list its elements as intervals of λ (denoted: Repλ(X))

Issue: Enumerating all balls takes O(n3) time. With O(n)-time BFS: O(n2).

7

Distance VC dimension in graphs

Given a set family X over universe V , the set A ⊂ V is shattered by X if:
for all S ⊂ A there is X ∈ X s.t. X ∩A = S.

i.e., X can carve out every subset of A.

7

Distance VC dimension in graphs

Given a set family X over universe V , the set A ⊂ V is shattered by X if:
for all S ⊂ A there is X ∈ X s.t. X ∩A = S.

i.e., X can carve out every subset of A.

The VC dimension of X is the maximum |A| such that A is shattered by X .

small VC-dimension ≃ samples give a faithful represnetation

7

Distance VC dimension in graphs

Given a set family X over universe V , the set A ⊂ V is shattered by X if:
for all S ⊂ A there is X ∈ X s.t. X ∩A = S.

i.e., X can carve out every subset of A.

The VC dimension of X is the maximum |A| such that A is shattered by X .

E.g. V = R2, X =halfplanes → VC-dim: d = 3.

small VC-dimension ≃ samples give a faithful represnetation

7

Distance VC dimension in graphs

Given a set family X over universe V , the set A ⊂ V is shattered by X if:
for all S ⊂ A there is X ∈ X s.t. X ∩A = S.

i.e., X can carve out every subset of A.

The VC dimension of X is the maximum |A| such that A is shattered by X .

E.g. V = R2, X =halfplanes → VC-dim: d = 3.

G := undirected unweighted graph, Nr(v) = ball of radius r at v ∈ V (G).

The distance VC-dimension d of G is the VC dimension of N :=
⋃

r N r(v).

small VC-dimension ≃ samples give a faithful represnetation

8

Stabbing paths and VC-dimension

Lemma (Informal)
Given⋆ a set system (V,N) of VC-dimension⋆⋆ d we can construct a stabbing
path λ in Õ(n1+1/d) time such that with high⋆⋆⋆ probability:∑

X∈N
|Repλ(S)| = Õ(|N |n1−1/d)

Constructed via recursive sampling.

8

Stabbing paths and VC-dimension

Lemma (Informal)
Given⋆ a set system (V,N) of VC-dimension⋆⋆ d we can construct a stabbing
path λ in Õ(n1+1/d) time such that with high⋆⋆⋆ probability:∑

X∈N
|Repλ(S)| = Õ(|N |n1−1/d)

Constructed via recursive sampling.

For implicit representations, we need:
1. VC-dimension bound
2. Small ball system N̂ of size O(n1+1/d−0.01)

8

Stabbing paths and VC-dimension

Lemma (Informal)
Given⋆ a set system (V,N) of VC-dimension⋆⋆ d we can construct a stabbing
path λ in Õ(n1+1/d) time such that with high⋆⋆⋆ probability:∑

X∈N
|Repλ(S)| = Õ(|N |n1−1/d)

Constructed via recursive sampling.

For implicit representations, we need:
1. VC-dimension bound
2. Small ball system N̂ of size O(n1+1/d−0.01)

Theorem [KZ25]
Kh-minor free graphs have distance VC dimension at most h− 1.

8

Stabbing paths and VC-dimension

Lemma (Informal)
Given⋆ a set system (V,N) of VC-dimension⋆⋆ d we can construct a stabbing
path λ in Õ(n1+1/d) time such that with high⋆⋆⋆ probability:∑

X∈N
|Repλ(S)| = Õ(|N |n1−1/d)

Constructed via recursive sampling.

For implicit representations, we need:
1. VC-dimension bound
2. Small ball system N̂ of size O(n1+1/d−0.01)

Theorem [KZ25]
Kh-minor free graphs have distance VC dimension at most h− 1.

Theorem (adapted from [CGL24])
Intersection graphs of pseudo-disks have distance VC dimension at most 4.

8

Stabbing paths and VC-dimension

Lemma (Informal)
Given⋆ a set system (V,N) of VC-dimension⋆⋆ d we can construct a stabbing
path λ in Õ(n1+1/d) time such that with high⋆⋆⋆ probability:∑

X∈N
|Repλ(S)| = Õ(|N |n1−1/d)

Constructed via recursive sampling.

For implicit representations, we need:
1. VC-dimension bound
2. Small ball system N̂ of size O(n1+1/d−0.01)

Theorem [KZ25]
Kh-minor free graphs have distance VC dimension at most h− 1.

Theorem (adapted from [CGL24])
Intersection graphs of pseudo-disks have distance VC dimension at most 4.

8

Stabbing paths and VC-dimension

Lemma (Informal)
Given⋆ a set system (V,N) of VC-dimension⋆⋆ d we can construct a stabbing
path λ in Õ(n1+1/d) time such that with high⋆⋆⋆ probability:∑

X∈N
|Repλ(S)| = Õ(|N |n1−1/d)

Constructed via recursive sampling.

For implicit representations, we need:
1. VC-dimension bound
2. Small ball system N̂ of size O(n1+1/d−0.01)

Theorem [KZ25]
Kh-minor free graphs have distance VC dimension at most h− 1.

Theorem (adapted from [CGL24])
Intersection graphs of pseudo-disks have distance VC dimension at most 4.

Coming up next

9

Generic framework and data structures

G

P
sP

tP

rP

s

ts
ecc(s)

10

Generic framework: LDD + ball growing
Step 1. Fix ∆, decompose G into Õ(n/∆) pieces P of (strong) diameter ≤ ∆

s.t. total boundary is small:
∑

P |∂P | = Õ(n/∆).

10

Generic framework: LDD + ball growing
Step 1. Fix ∆, decompose G into Õ(n/∆) pieces P of (strong) diameter ≤ ∆

s.t. total boundary is small:
∑

P |∂P | = Õ(n/∆).
Step 2. Run BFS from each boundary vertex v ∈

⋃
P ∂P , obtaining also ecc(v).

Set rP := max
v∈∂P

ecc(v).

G

P
sP

tP

rP

10

Generic framework: LDD + ball growing
Step 1. Fix ∆, decompose G into Õ(n/∆) pieces P of (strong) diameter ≤ ∆

s.t. total boundary is small:
∑

P |∂P | = Õ(n/∆).
Step 2. Run BFS from each boundary vertex v ∈

⋃
P ∂P , obtaining also ecc(v).

Set rP := max
v∈∂P

ecc(v).

G

P
sP

tP

rP

s

ts
ecc(s)

By triangle-ineq:
distG(sP , t)−∆ ≤ distG(s, t) ≤ distG(sP , t)+∆

10

Generic framework: LDD + ball growing
Step 1. Fix ∆, decompose G into Õ(n/∆) pieces P of (strong) diameter ≤ ∆

s.t. total boundary is small:
∑

P |∂P | = Õ(n/∆).
Step 2. Run BFS from each boundary vertex v ∈

⋃
P ∂P , obtaining also ecc(v).

Set rP := max
v∈∂P

ecc(v).

G

P
sP

tP

rP

s

ts
ecc(s)

By triangle-ineq:
distG(sP , t)−∆ ≤ distG(s, t) ≤ distG(sP , t)+∆

⇒ dist(sP , ts) ≥ rP − 2∆

The relevant region of P is
RP := {v ∈ G | distG(sP , v) ≥ rP − 2∆}.

The modified r-ball of s ∈ P is N̂r(s) := Nr(s) ∩RP . Let N̂ := {N̂r(s)}r,s.

10

Generic framework: LDD + ball growing
Step 1. Fix ∆, decompose G into Õ(n/∆) pieces P of (strong) diameter ≤ ∆

s.t. total boundary is small:
∑

P |∂P | = Õ(n/∆).
Step 2. Run BFS from each boundary vertex v ∈

⋃
P ∂P , obtaining also ecc(v).

Set rP := max
v∈∂P

ecc(v).

G

P
sP

tP

rP

s

ts
ecc(s)

By triangle-ineq:
distG(sP , t)−∆ ≤ distG(s, t) ≤ distG(sP , t)+∆

⇒ dist(sP , ts) ≥ rP − 2∆

The relevant region of P is
RP := {v ∈ G | distG(sP , v) ≥ rP − 2∆}.

The modified r-ball of s ∈ P is N̂r(s) := Nr(s) ∩RP . Let N̂ := {N̂r(s)}r,s.

Step 3. Compute stabbing path λ for N̂ .
For each P and each s ∈ P , from r = rP − 3∆− 1 to r = rP +∆,
compute Repλ(N̂r(s)).

Lemma
The modified ball system N̂ has the same VC-dim as N and |N̂ | = O(∆n)

11

Efficient ball growing?

Step 3. Compute stabbing path λ for N̂ .
For each P and each s ∈ P , from r = rP − 3∆− 1 to r = rP +∆,
compute Repλ(N̂r(s)).

Goal: Given Repλ(N̂r(v)) for all v ∈ V (G), compute Repλ(N̂r+1(s))

11

Efficient ball growing?

Step 3. Compute stabbing path λ for N̂ .
For each P and each s ∈ P , from r = rP − 3∆− 1 to r = rP +∆,
compute Repλ(N̂r(s)).

Goal: Given Repλ(N̂r(v)) for all v ∈ V (G), compute Repλ(N̂r+1(s))

Repλ(N̂
r+1(s)) =

⋃
v∈N(s)

Repλ(N̂
r(v))

11

Efficient ball growing?

Step 3. Compute stabbing path λ for N̂ .
For each P and each s ∈ P , from r = rP − 3∆− 1 to r = rP +∆,
compute Repλ(N̂r(s)).

Goal: Given Repλ(N̂r(v)) for all v ∈ V (G), compute Repλ(N̂r+1(s))

Repλ(N̂
r+1(s)) =

⋃
v∈N(s)

Repλ(N̂
r(v))

Can be done directly in sparse graphs
as |N(s)| is (amortized) small

11

Efficient ball growing?

Step 3. Compute stabbing path λ for N̂ .
For each P and each s ∈ P , from r = rP − 3∆− 1 to r = rP +∆,
compute Repλ(N̂r(s)).

Goal: Given Repλ(N̂r(v)) for all v ∈ V (G), compute Repλ(N̂r+1(s))

Repλ(N̂
r+1(s)) =

⋃
v∈N(s)

Repλ(N̂
r(v))

Can be done directly in sparse graphs
as |N(s)| is (amortized) small

In dense graphs, we need to solve:
Interval Searching
Given set of objects O, each associated with some integer intervals of [1 : n],
design a data structure that:
for query q ∈ O returns the union of the representations of the objects o ∈ O
that intersect q.

11

Efficient ball growing?

Step 3. Compute stabbing path λ for N̂ .
For each P and each s ∈ P , from r = rP − 3∆− 1 to r = rP +∆,
compute Repλ(N̂r(s)).

Goal: Given Repλ(N̂r(v)) for all v ∈ V (G), compute Repλ(N̂r+1(s))

Repλ(N̂
r+1(s)) =

⋃
v∈N(s)

Repλ(N̂
r(v))

Can be done directly in sparse graphs
as |N(s)| is (amortized) small

In dense graphs, we need to solve:
Interval Searching
Given set of objects O, each associated with some integer intervals of [1 : n],
design a data structure that:
for query q ∈ O returns the union of the representations of the objects o ∈ O
that intersect q.

We need⋆: Õ(input size) preprocessing and Õ(output size) query time

12

Data strucutre problem reductions
DSP1: Interval Searching
Given set of objects O, each associated with some integer intervals of [1 : n],
design a data structure that:
for query q ∈ O returns the union of the representations of the objects o ∈ O
that intersect q.

12

Data strucutre problem reductions
DSP1: Interval Searching
Given set of objects O, each associated with some integer intervals of [1 : n],
design a data structure that:
for query q ∈ O returns the union of the representations of the objects o ∈ O
that intersect q.

Reduction with polylog preprocessing and query overhead

Hard and non-decomposable range searching...

DSP2: Interval Cover
Given objects O and I : O → [1 : n], design a data structure that:
for query q ∈ O decides if the union of {I(o) | o ∈ O intersects q} covers I(q).

12

Data strucutre problem reductions
DSP1: Interval Searching
Given set of objects O, each associated with some integer intervals of [1 : n],
design a data structure that:
for query q ∈ O returns the union of the representations of the objects o ∈ O
that intersect q.

Reduction with polylog preprocessing and query overhead

Hard and non-decomposable range searching...
∼ Reduction with no(1) preprocessing and query overhead
Slice into blocks of size b.

DSP3: Rainbow colored intersection searching
Given objects O and C : O → [n] (color), design a data structure that:
for query q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

DSP2: Interval Cover
Given objects O and I : O → [1 : n], design a data structure that:
for query q ∈ O decides if the union of {I(o) | o ∈ O intersects q} covers I(q).

12

Data strucutre problem reductions
DSP1: Interval Searching
Given set of objects O, each associated with some integer intervals of [1 : n],
design a data structure that:
for query q ∈ O returns the union of the representations of the objects o ∈ O
that intersect q.

Reduction with polylog preprocessing and query overhead

Hard and non-decomposable range searching...
∼ Reduction with no(1) preprocessing and query overhead
Slice into blocks of size b.

DSP3: Rainbow colored intersection searching
Given objects O and C : O → [n] (color), design a data structure that:
for query q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

DSP2: Interval Cover
Given objects O and I : O → [1 : n], design a data structure that:
for query q ∈ O decides if the union of {I(o) | o ∈ O intersects q} covers I(q).

Theorem
If we can construct in Õ(|ORC |) time a data structure DRC with Õ(1) query for
DSP3, then for any b ∈ [1, n], we can construct a data structure for DSP2 with
total run time Õ(NIC · b+ LIC/b).

13

Data structure for squares
Rainbow colored intersection searching
Given squares O and coloring C : O → [n], design a data structure that:
given square q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

13

Data structure for squares
Rainbow colored intersection searching
Given squares O and coloring C : O → [n], design a data structure that:
given square q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

as = (xs, ys,−rs)

x

y
z

(xs, ys)

2rs

(xq, yq)

2rq

13

Data structure for squares
Rainbow colored intersection searching
Given squares O and coloring C : O → [n], design a data structure that:
given square q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

as = (xs, ys,−rs)

x

y
z

(xs, ys)

2rs

(xq, yq)

2rq

q̇ = (xq, yq, rq)

13

Data structure for squares
Rainbow colored intersection searching
Given squares O and coloring C : O → [n], design a data structure that:
given square q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

as = (xs, ys,−rs)

x

y
z

(xs, ys)

2rs

(xq, yq)

2rq

• q has intersection with color class i iff q̇ is above lower envelope of color-i cones.
Rough idea:

q̇ = (xq, yq, rq)

13

Data structure for squares
Rainbow colored intersection searching
Given squares O and coloring C : O → [n], design a data structure that:
given square q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

as = (xs, ys,−rs)

x

y
z

(xs, ys)

2rs

(xq, yq)

2rq

• q has intersection with color class i iff q̇ is above lower envelope of color-i cones.

• for each color class, compute lower envelope of cones

Rough idea:

q̇ = (xq, yq, rq)

13

Data structure for squares
Rainbow colored intersection searching
Given squares O and coloring C : O → [n], design a data structure that:
given square q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

as = (xs, ys,−rs)

x

y
z

(xs, ys)

2rs

(xq, yq)

2rq

• q has intersection with color class i iff q̇ is above lower envelope of color-i cones.

• for each color class, compute lower envelope of cones

• slice the space above lower envelope into pw disjoint slabs of fixed directions

Rough idea:

q̇ = (xq, yq, rq)

13

Data structure for squares
Rainbow colored intersection searching
Given squares O and coloring C : O → [n], design a data structure that:
given square q ∈ O decides if all colors appear in {C(o) | o ∈ O intersects q}.

as = (xs, ys,−rs)

x

y
z

(xs, ys)

2rs

(xq, yq)

2rq

• q has intersection with color class i iff q̇ is above lower envelope of color-i cones.

• for each color class, compute lower envelope of cones

• slice the space above lower envelope into pw disjoint slabs of fixed directions

• build (reverse) range counting data structure on all slabs

Rough idea:

q̇ = (xq, yq, rq)

14

Running time analysis for squares
Stabbing path λ gives:∑

P

∑
s∈P

rP+∆∑
r=rP−2∆

|Repλ(N̂
r[s])| = Õ(∆ · n2−1/d) = Õ(∆ · n7/4) (d = 4)

14

Running time analysis for squares
Stabbing path λ gives:∑

P

∑
s∈P

rP+∆∑
r=rP−2∆

|Repλ(N̂
r[s])| = Õ(∆ · n2−1/d) = Õ(∆ · n7/4) (d = 4)

The total length of all the intervals for s ∈ P is at most 2|P | · |RP | = O(|P | · n).
Ball growing running time for fixed P, r:

Õ
(
b ·
∑
s∈P

(
|RepλP

(N̂r−1[s])|+ |RepλP
(N̂r[s])|

)
+ |P |n/b

)

14

Running time analysis for squares
Stabbing path λ gives:∑

P

∑
s∈P

rP+∆∑
r=rP−2∆

|Repλ(N̂
r[s])| = Õ(∆ · n2−1/d) = Õ(∆ · n7/4) (d = 4)

The total length of all the intervals for s ∈ P is at most 2|P | · |RP | = O(|P | · n).
Ball growing running time for fixed P, r:

Õ
(
b ·
∑
s∈P

(
|RepλP

(N̂r−1[s])|+ |RepλP
(N̂r[s])|

)
+ |P |n/b

)

Õ(n2/∆+ n5/4) +
∑
P

rP+∆∑
r=rP−2∆

Õ

(
b ·
∑
s∈P

(
(|RepλP

(N̂r−1[s])|+ |RepλP
(N̂r[s])|

)
+ |P |n/b

)
= Õ(n2/∆+ n5/4) + Õ(b∆ · n7/4) + Õ(n2∆/b) (d = 4)

= Õ(n2−1/16). (for optimal choices of b = ∆2 and ∆ = n1/16)

BFSes on ∂P Constructing λ

15

Unit disks: types, resamples
Base data strucutre problem is related to Hopcroft’s problem, Ω(n1/3) query time likely.

15

Unit disks: types, resamples
Base data strucutre problem is related to Hopcroft’s problem, Ω(n1/3) query time likely.

15

Unit disks: types, resamples
Base data strucutre problem is related to Hopcroft’s problem, Ω(n1/3) query time likely.
Idea: split into O(1)
modulo classes.

1

1

Pseudolines

15

Unit disks: types, resamples
Base data strucutre problem is related to Hopcroft’s problem, Ω(n1/3) query time likely.
Idea: split into O(1)
modulo classes.

1

1

Pseudolines

• The intermediate sets are no longer neighborhood balls (new set system).
→ Fortunately VC-dimension is still ≤ 4, but only for fixed radius r.

Technical difficulties:

15

Unit disks: types, resamples
Base data strucutre problem is related to Hopcroft’s problem, Ω(n1/3) query time likely.
Idea: split into O(1)
modulo classes.

1

1

Pseudolines

• The intermediate sets are no longer neighborhood balls (new set system).
→ Fortunately VC-dimension is still ≤ 4, but only for fixed radius r.

• Need new stabbing path & representations for each r (and each P)

Technical difficulties:

15

Unit disks: types, resamples
Base data strucutre problem is related to Hopcroft’s problem, Ω(n1/3) query time likely.
Idea: split into O(1)
modulo classes.

1

1

Pseudolines

• The intermediate sets are no longer neighborhood balls (new set system).
→ Fortunately VC-dimension is still ≤ 4, but only for fixed radius r.

• Need new stabbing path & representations for each r (and each P)

Technical difficulties:

• Need to work with balls from two or three different types.
→ Fortunately, the combined set systems still have VC-dimension ≤ 8.

15

Unit disks: types, resamples
Base data strucutre problem is related to Hopcroft’s problem, Ω(n1/3) query time likely.
Idea: split into O(1)
modulo classes.

1

1

Pseudolines

• The intermediate sets are no longer neighborhood balls (new set system).
→ Fortunately VC-dimension is still ≤ 4, but only for fixed radius r.

• Need new stabbing path & representations for each r (and each P)

Technical difficulties:

• Need to work with balls from two or three different types.
→ Fortunately, the combined set systems still have VC-dimension ≤ 8.

• Switching stabbing paths is too costly if pieces are small.
→ Work only with pieces larger than a threshold; for small pieces, we switch
to a different algo (based on distance compression)

16

Ongoing work, a conjecture, and open problems
VC-dim d + efficient interval cover DS

⇝ O(n2−f(d)) diameter computation/distance oracle

16

Ongoing work, a conjecture, and open problems
VC-dim d + efficient interval cover DS

⇝ O(n2−f(d)) diameter computation/distance oracle

Work in progress:
• Õ(n4/3) for Diameter-2 in UDG

16

Ongoing work, a conjecture, and open problems
VC-dim d + efficient interval cover DS

⇝ O(n2−f(d)) diameter computation/distance oracle

Work in progress:
• Õ(n4/3) for Diameter-2 in UDG
• Subquadratic algo for Diameter-2 and Diameter-3 of unit cubes in R3.

16

Ongoing work, a conjecture, and open problems
VC-dim d + efficient interval cover DS

⇝ O(n2−f(d)) diameter computation/distance oracle

Work in progress:
• Õ(n4/3) for Diameter-2 in UDG
• Subquadratic algo for Diameter-2 and Diameter-3 of unit cubes in R3.
• Algorithms/hardness for Diameter-k in intersection graphs.

Sometimes d = g(k), gives O(n2−f(k)) diameter algo

16

Ongoing work, a conjecture, and open problems
VC-dim d + efficient interval cover DS

⇝ O(n2−f(d)) diameter computation/distance oracle

Work in progress:
• Õ(n4/3) for Diameter-2 in UDG
• Subquadratic algo for Diameter-2 and Diameter-3 of unit cubes in R3.
• Algorithms/hardness for Diameter-k in intersection graphs.

Sometimes d = g(k), gives O(n2−f(k)) diameter algo

(Very bold) Conjecture
There is some f(d) > 0 such that if G is a (nice?) graph class with distance
VC-dim≤ d, then there is a O(n2−f(d)) time algorithm for diameter.

16

Ongoing work, a conjecture, and open problems
VC-dim d + efficient interval cover DS

⇝ O(n2−f(d)) diameter computation/distance oracle

Work in progress:
• Õ(n4/3) for Diameter-2 in UDG
• Subquadratic algo for Diameter-2 and Diameter-3 of unit cubes in R3.
• Algorithms/hardness for Diameter-k in intersection graphs.

Sometimes d = g(k), gives O(n2−f(k)) diameter algo

(Very bold) Conjecture
There is some f(d) > 0 such that if G is a (nice?) graph class with distance
VC-dim≤ d, then there is a O(n2−f(d)) time algorithm for diameter.

Open:
?1 disk graphs

(needs data strucutre breakthrough)?
?2 Super-linear fine-grained lower bounds?

16

Ongoing work, a conjecture, and open problems
VC-dim d + efficient interval cover DS

⇝ O(n2−f(d)) diameter computation/distance oracle

Work in progress:
• Õ(n4/3) for Diameter-2 in UDG
• Subquadratic algo for Diameter-2 and Diameter-3 of unit cubes in R3.
• Algorithms/hardness for Diameter-k in intersection graphs.

Sometimes d = g(k), gives O(n2−f(k)) diameter algo

(Very bold) Conjecture
There is some f(d) > 0 such that if G is a (nice?) graph class with distance
VC-dim≤ d, then there is a O(n2−f(d)) time algorithm for diameter.

Open:
?1 disk graphs

(needs data strucutre breakthrough)?
?2 Super-linear fine-grained lower bounds?

Diameter-2 for disks or radii [1, 1 + ε]?

16

Ongoing work, a conjecture, and open problems
VC-dim d + efficient interval cover DS

⇝ O(n2−f(d)) diameter computation/distance oracle

Work in progress:
• Õ(n4/3) for Diameter-2 in UDG
• Subquadratic algo for Diameter-2 and Diameter-3 of unit cubes in R3.
• Algorithms/hardness for Diameter-k in intersection graphs.

Sometimes d = g(k), gives O(n2−f(k)) diameter algo

(Very bold) Conjecture
There is some f(d) > 0 such that if G is a (nice?) graph class with distance
VC-dim≤ d, then there is a O(n2−f(d)) time algorithm for diameter.

Open:
?1 disk graphs

(needs data strucutre breakthrough)?
?2 Super-linear fine-grained lower bounds?

Diameter-2 for disks or radii [1, 1 + ε]?

Thanks for listening!

17

Diameter:

Distance oracle
(construction time/space)

Query: Õ(1).

