Subquadratic diameter computation in graphs of bounded VC-dimension

Timothy Chan, Hsien-Chih Chang, Jie Gao, Hung Le, Sándor Kisfaludi-Bak, Da Wei Zheng

Helsinki Algorithms and Theory Days 2025

Given a simple undirected graph G on n vertices and m edges, and the corrsponding shortest-path metric,

Diameter

Find the maximum distance among vertices

Eccentricites

For each vertex v find the minimum radius of ball at v that covers G.

Distance Oracle

Create a data structure, that, when given a pair of points, returns their distance in $\widetilde{O}(1)$ time.

Given a simple undirected graph G on n vertices and m edges, and the corrsponding shortest-path metric,

Diameter

Find the maximum distance among vertices

Eccentricites

For each vertex v find the minimum radius of ball at v that covers G.

Distance Oracle

Create a data structure, that, when given a pair of points, returns their distance in $\widetilde{O}(1)$ time.

Given a simple undirected graph G on n vertices and m edges, and the corrsponding shortest-path metric,

Diameter

Find the maximum distance among vertices

Eccentricites

For each vertex v find the minimum radius of ball at v that covers G.

Distance Oracle

Create a data structure, that, when given a pair of points, returns their distance in $\widetilde{O}(1)$ time.

General: weighted O(mn), unweighted $O(n^{\omega} \log n)$

Sparse graphs: $O(n^2)$

Given a simple undirected graph G on n vertices and m edges, and the corrsponding shortest-path metric,

Diameter

Find the maximum distance among vertices

Eccentricites

For each vertex v find the minimum radius of ball at v that covers G.

Distance Oracle

Create a data structure, that, when given a pair of points, returns their distance in $\widetilde{O}(1)$ time.

General: weighted O(mn), unweighted $O(n^{\omega} \log n)$

Sparse graphs: $O(n^2)$

Lower bound by Roditty and V. Williams (2013): No $O(n^{2-\varepsilon})$ algo to decide diameter 2 vs 3 in sparse graphs under SETH.

First breakthrough:

Cabello '18, Gawrychowski et al. '21: diameter of **planar** graphs in $\widetilde{O}(n^{5/3})$

First breakthrough:

Cabello '18, Gawrychowski et al. '21: diameter of **planar** graphs in $\widetilde{O}(n^{5/3})$

 K_h -minor-free graphs: $\widetilde{O}(n^{2-1/(3h-1)})$ [DHV22, LW24] Graphs of distance VC-dimension d: $\widetilde{O}(Dmn^{1-1/d})$ [DHV22, DKP24] graph param., def later diameter

First breakthrough:

Cabello '18, Gawrychowski et al. '21: diameter of **planar** graphs in $\widetilde{O}(n^{5/3})$

```
K_h-minor-free graphs: \widetilde{O}(n^{2-1/(3h-1)}) [DHV22, LW24] Graphs of distance VC-dimension d: \widetilde{O}(Dmn^{1-1/d}) [DHV22, DKP24] graph param., def later diameter
```

Axis-parallel unit squares: $O(Dn^{7/4})$ [DKP24] Unit disk graphs with +2 additive error: $\widetilde{O}(n^{2-1/18})$ [CGL24]

First breakthrough:

Cabello '18, Gawrychowski et al. '21: diameter of **planar** graphs in $\widetilde{O}(n^{5/3})$

 K_h -minor-free graphs: $\widetilde{O}(n^{2-1/(3h-1)})$ [DHV22, LW24] Graphs of distance VC-dimension d: $\widetilde{O}(Dmn^{1-1/d})$ [DHV22, DKP24] graph param., def later diameter

Axis-parallel unit squares: $O(Dn^{7/4})$ [DKP24] Unit disk graphs with +2 additive error: $\widetilde{O}(n^{2-1/18})$ [CGL24]

 $\Omega(n^{2-\varepsilon})$ lower bound for many intersection graphs [B**K**KNP22]: Unit balls, axis-aligned unit cubes, unit segments, etc.

First breakthrough:

Cabello '18, Gawrychowski et al. '21: diameter of **planar** graphs in $\widetilde{O}(n^{5/3})$

 K_h -minor-free graphs: $\widetilde{O}(n^{2-1/(3h-1)})$ [DHV22, LW24] Graphs of distance VC-dimension d: $\widetilde{O}(Dmn^{1-1/d})$ [DHV22, DKP24] graph param., def later diameter

Axis-parallel unit squares: $O(Dn^{7/4})$ [DKP24] Unit disk graphs with +2 additive error: $\widetilde{O}(n^{2-1/18})$ [CGL24]

 $\Omega(n^{2-\varepsilon})$ lower bound for many intersection graphs [B**K**KNP22]: Unit balls, axis-aligned unit cubes, unit segments, etc.

Is there a subquadratic algorithm for diameter in unit disk graphs?

Results: Subquadratic algorithms for diameter

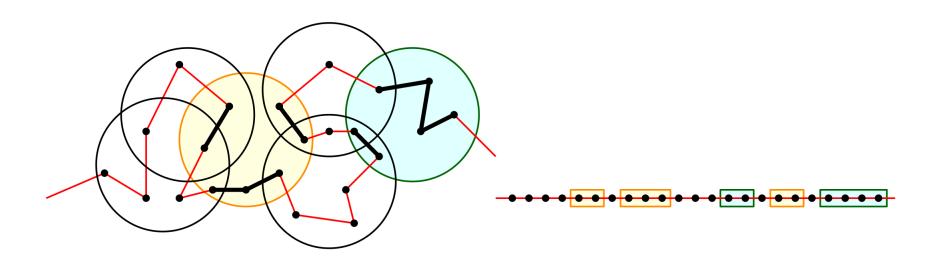
graph class	best previous		new
planar	$\widetilde{O}(n^{5/3})$	[Cab18, GKM ⁺ 21]	
K_h -minor-free	$\widetilde{O}(n^{2-1/(3h-1)})$	[DHV22, LW24]	$\widetilde{O}(n^{2-1/(2h-2)})$
VC-dimbounded	$\widetilde{O}(\min\{Dmn^{1-1/d}, mn\})$	[DHV22, DKP24]	$\widetilde{O}(mn^{1-1/(2d)})$
unit square	$\widetilde{O}(\min\{Dn^{7/4}, n^2\})$	[DKP24]	$O^*(n^{2-1/8})$
arbitrary square	$\widetilde{O}(n^2)$	[CS19]	$\widetilde{O}(n^{2-1/12})$
unit disk	$O(n^2\sqrt{\frac{\log\log n}{\log n}})$	[CS16]	$O^*(n^{2-1/18})$

Results: Subquadratic algorithms for diameter

graph class	best previous		new
planar	$\widetilde{O}(n^{5/3})$	[Cab18, GKM ⁺ 21]	
K_h -minor-free	$\widetilde{O}(n^{2-1/(3h-1)})$	[DHV22, LW24]	$\widetilde{O}(n^{2-1/(2h-2)})$
VC-dimbounded	$\widetilde{O}(\min\{Dmn^{1-1/d}, mn\})$	[DHV22, DKP24]	$\widetilde{O}(mn^{1-1/(2d)})$
unit square	$\widetilde{O}(\min\{Dn^{7/4}, n^2\})$	[DKP24]	$O^*(n^{2-1/8})$
arbitrary square	$\widetilde{O}(n^2)$	[CS19]	$\widetilde{O}(n^{2-1/12})$
unit disk	$O(n^2\sqrt{\frac{\log\log n}{\log n}})$	[CS16]	$O^*(n^{2-1/18})$

- We don't need separators!
- More efficient ball growing process based on very simple LDD
- New data structures and ideas for geom. intersection graphs

Implicit representations



Diameter $\leq D$ iff all balls in $\mathcal{N}^D := \{N^D(v) \mid v \in G\}$ cover V(G). Strategy: grow balls to compute all balls $\mathcal{N} = \bigcup_r \mathcal{N}^r$.

Diameter $\leq D$ iff all balls in $\mathcal{N}^D:=\{N^D(v)\mid v\in G\}$ cover V(G). Strategy: grow balls to compute all balls $\mathcal{N}=\bigcup_r\mathcal{N}^r$.

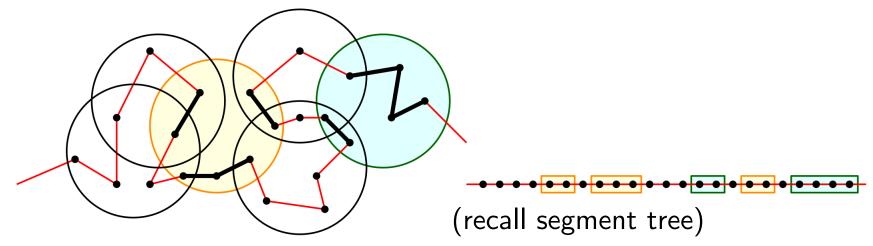
Issue: Enumerating all balls takes $O(n^3)$ time. With O(n)-time BFS: $O(n^2)$.

Diameter $\leq D$ iff all balls in $\mathcal{N}^D := \{N^D(v) \mid v \in G\}$ cover V(G). Strategy: grow balls to compute all balls $\mathcal{N} = \bigcup_r \mathcal{N}^r$.

Issue: Enumerating all balls takes $O(n^3)$ time. With O(n)-time BFS: $O(n^2)$.

We need an implicit representation for the balls.

Implicit representation of disks via geometric stabbing path:



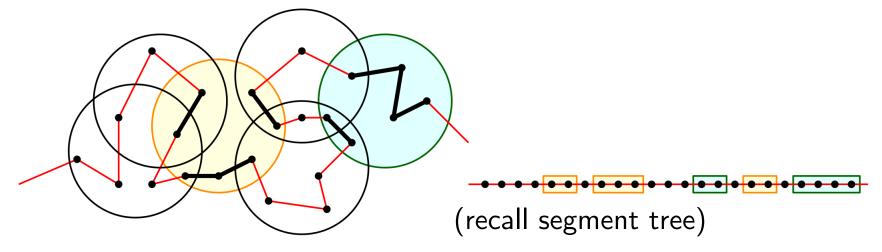
Diameter $\leq D$ iff all balls in $\mathcal{N}^D := \{N^D(v) \mid v \in G\}$ cover V(G).

Strategy: grow balls to compute all balls $\mathcal{N} = \bigcup_r \mathcal{N}^r$.

Issue: Enumerating all balls takes $O(n^3)$ time. With O(n)-time BFS: $O(n^2)$.

We need an implicit representation for the balls.

Implicit representation of disks via geometric stabbing path:



A stabbing path of G is any complete ordering λ of V(G). To represent $X\subset V(G)$, list its elements as intervals of λ (denoted: $\operatorname{Rep}_{\lambda}(X)$)

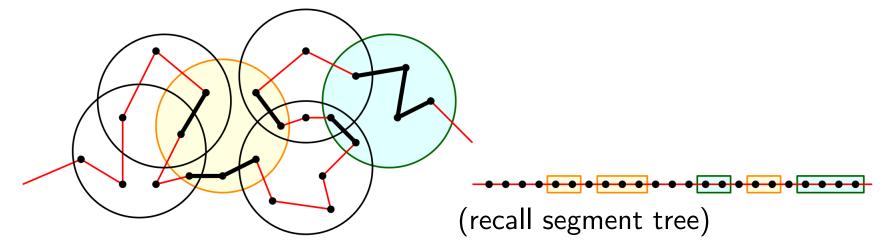
Diameter $\leq D$ iff all balls in $\mathcal{N}^D := \{N^D(v) \mid v \in G\}$ cover V(G).

Strategy: grow balls to compute all balls $\mathcal{N} = \bigcup_r \mathcal{N}^r$.

Issue: Enumerating all balls takes $O(n^3)$ time. With O(n)-time BFS: $O(n^2)$.

We need an *implicit* representation for the balls.

Implicit representation of disks via geometric stabbing path:



A stabbing path of G is any complete ordering λ of V(G). To represent $X\subset V(G)$, list its elements as intervals of λ (denoted: $\operatorname{Rep}_{\lambda}(X)$)

We want subquadratic representation in amortized sense:

$$\sum_{X\in\mathcal{N}}|\mathsf{Rep}_{\lambda}(X)|=O(n^{1.999}).$$

Given a set family \mathcal{X} over universe V, the set $A \subset V$ is *shattered* by \mathcal{X} if: for all $S \subset A$ there is $X \in \mathcal{X}$ s.t. $X \cap A = S$.

i.e., \mathcal{X} can carve out every subset of A.

Given a set family \mathcal{X} over universe V, the set $A \subset V$ is *shattered* by \mathcal{X} if: for all $S \subset A$ there is $X \in \mathcal{X}$ s.t. $X \cap A = S$.

i.e., \mathcal{X} can carve out every subset of A.

The *VC dimension* of \mathcal{X} is the maximum |A| such that A is shattered by \mathcal{X} .

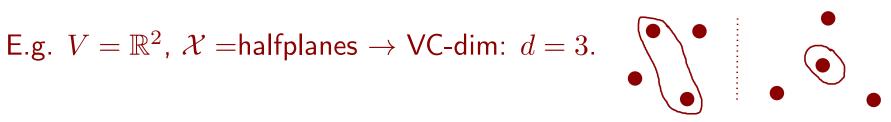
small VC-dimension \simeq samples give a faithful represnetation

Given a set family \mathcal{X} over universe V, the set $A \subset V$ is shattered by \mathcal{X} if: for all $S \subset A$ there is $X \in \mathcal{X}$ s.t. $X \cap A = S$.

i.e., \mathcal{X} can carve out every subset of A.

The VC dimension of \mathcal{X} is the maximum |A| such that A is shattered by \mathcal{X} . small VC-dimension \simeq samples give a faithful representation

E.g.
$$V=\mathbb{R}^2$$
, $\mathcal{X}=$ halfplanes o VC-dim: $d=3$



Given a set family \mathcal{X} over universe V, the set $A \subset V$ is shattered by \mathcal{X} if: for all $S \subset A$ there is $X \in \mathcal{X}$ s.t. $X \cap A = S$.

i.e., \mathcal{X} can carve out every subset of A.

The VC dimension of \mathcal{X} is the maximum |A| such that A is shattered by \mathcal{X} . small VC-dimension \simeq samples give a faithful representation

E.g.
$$V=\mathbb{R}^2$$
, $\mathcal{X}=$ halfplanes \to VC-dim: $d=3$

G:= undirected unweighted graph, $N^r(v)=$ ball of radius r at $v\in V(G)$.

The distance VC-dimension d of G is the VC dimension of $\mathcal{N} := \bigcup_r \mathcal{N}^r(v)$.

Lemma (Informal)

Given* a set system (V, \mathcal{N}) of VC-dimension** d we can construct a stabbing path λ in $\widetilde{O}(n^{1+1/d})$ time such that with high*** probability:

$$\sum_{X \in \mathcal{N}} |\mathsf{Rep}_{\lambda}(S)| = \widetilde{O}(|\mathcal{N}|n^{1-1/d})$$

➤ Constructed via recursive sampling.

Lemma (Informal)

Given* a set system (V, \mathcal{N}) of VC-dimension** d we can construct a stabbing path λ in $\widetilde{O}(n^{1+1/d})$ time such that with high*** probability:

$$\sum_{X \in \mathcal{N}} |\mathsf{Rep}_{\lambda}(S)| = \widetilde{O}(|\mathcal{N}|n^{1-1/d})$$

➤ Constructed via recursive sampling.

For implicit representations, we need:

- 1. VC-dimension bound
- 2. Small ball system $\widehat{\mathcal{N}}$ of size $O(n^{1+1/d-0.01})$

Lemma (Informal)

Given* a set system (V, \mathcal{N}) of VC-dimension** d we can construct a stabbing path λ in $\widetilde{O}(n^{1+1/d})$ time such that with high*** probability:

$$\sum_{X \in \mathcal{N}} |\mathsf{Rep}_{\lambda}(S)| = \widetilde{O}(|\mathcal{N}|n^{1-1/d})$$

Constructed via recursive sampling.

For implicit representations, we need:

- 1. VC-dimension bound
- 2. Small ball system $\widehat{\mathcal{N}}$ of size $O(n^{1+1/d-0.01})$

Theorem [KZ25]

 K_h -minor free graphs have distance VC dimension at most h-1.

Lemma (Informal)

Given* a set system (V, \mathcal{N}) of VC-dimension** d we can construct a stabbing path λ in $\widetilde{O}(n^{1+1/d})$ time such that with high*** probability:

$$\sum_{X \in \mathcal{N}} |\mathsf{Rep}_{\lambda}(S)| = \widetilde{O}(|\mathcal{N}| n^{1-1/d})$$

➤ Constructed via recursive sampling.

For implicit representations, we need:

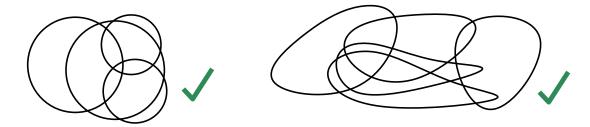
- 1. VC-dimension bound
- 2. Small ball system $\widehat{\mathcal{N}}$ of size $O(n^{1+1/d-0.01})$

Theorem [KZ25]

 K_h -minor free graphs have distance VC dimension at most h-1.

Theorem (adapted from [CGL24])

Intersection graphs of pseudo-disks have distance VC dimension at most 4.



Lemma (Informal)

Given* a set system (V, \mathcal{N}) of VC-dimension** d we can construct a stabbing path λ in $\widetilde{O}(n^{1+1/d})$ time such that with high*** probability:

$$\sum_{X \in \mathcal{N}} |\mathsf{Rep}_{\lambda}(S)| = \widetilde{O}(|\mathcal{N}|n^{1-1/d})$$

► Constructed via recursive sampling.

For implicit representations, we need:

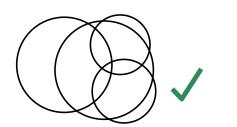
- 1. VC-dimension bound
- 2. Small ball system $\widehat{\mathcal{N}}$ of size $O(n^{1+1/d-0.01})$

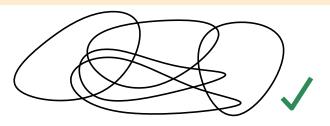
Theorem [KZ25]

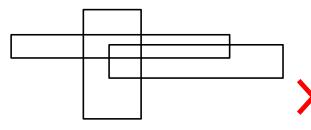
 K_h -minor free graphs have distance VC dimension at most h-1.

Theorem (adapted from [CGL24])

Intersection graphs of pseudo-disks have distance VC dimension at most 4.







Lemma (Informal)

Given* a set system (V, \mathcal{N}) of VC-dimension** d we can construct a stabbing path λ in $\widetilde{O}(n^{1+1/d})$ time such that with high*** probability:

$$\sum_{X \in \mathcal{N}} |\mathsf{Rep}_{\lambda}(S)| = \widetilde{O}(|\mathcal{N}|n^{1-1/d})$$

► Constructed via recursive sampling.

For implicit representations, we need:

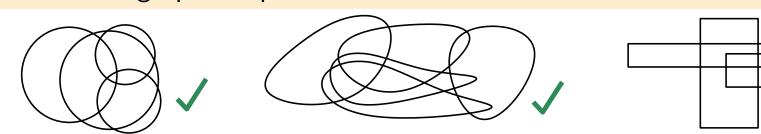
- 1. VC-dimension bound
- 2. Small ball system $\widehat{\mathcal{N}}$ of size $O(n^{1+1/d-0.01})$ Coming up next

Theorem [KZ25]

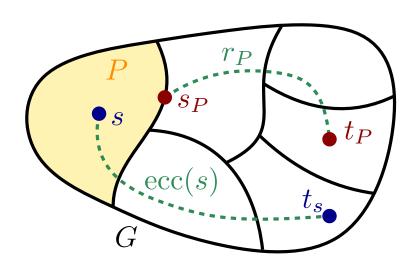
 K_h -minor free graphs have distance VC dimension at most h-1.

Theorem (adapted from [CGL24])

Intersection graphs of pseudo-disks have distance VC dimension at most 4.

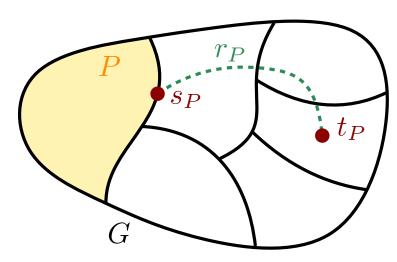


Generic framework and data structures



Step 1. Fix Δ , decompose G into $\widetilde{O}(n/\Delta)$ pieces P of (strong) diameter $\leq \Delta$ s.t. total boundary is small: $\sum_P |\partial P| = \widetilde{O}(n/\Delta)$.

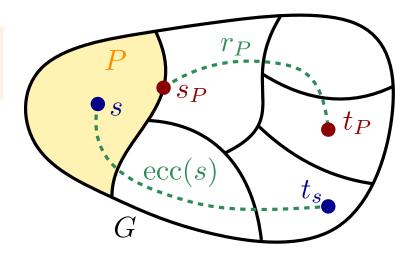
- Step 1. Fix Δ , decompose G into $\widetilde{O}(n/\Delta)$ pieces P of (strong) diameter $\leq \Delta$ s.t. total boundary is small: $\sum_P |\partial P| = \widetilde{O}(n/\Delta)$.
- Step 2. Run BFS from each boundary vertex $v \in \bigcup_P \partial P$, obtaining also $\mathrm{ecc}(v)$. Set $r_P := \max_{v \in \partial P} \mathrm{ecc}(v)$.



- Step 1. Fix Δ , decompose G into $\widetilde{O}(n/\Delta)$ pieces P of (strong) diameter $\leq \Delta$ s.t. total boundary is small: $\sum_P |\partial P| = \widetilde{O}(n/\Delta)$.
- Step 2. Run BFS from each boundary vertex $v \in \bigcup_P \partial P$, obtaining also ecc(v). Set $r_P := \max_{v \in \partial P} ecc(v)$.

By triangle-ineq:

 $\operatorname{dist}_{G}(s_{P}, t) - \Delta \leq \operatorname{dist}_{G}(s, t) \leq \operatorname{dist}_{G}(s_{P}, t) + \Delta$



- Step 1. Fix Δ , decompose G into $\widetilde{O}(n/\Delta)$ pieces P of (strong) diameter $\leq \Delta$ s.t. total boundary is small: $\sum_P |\partial P| = \widetilde{O}(n/\Delta)$.
- Step 2. Run BFS from each boundary vertex $v \in \bigcup_P \partial P$, obtaining also ecc(v). Set $r_P := \max_{v \in \partial P} ecc(v)$.

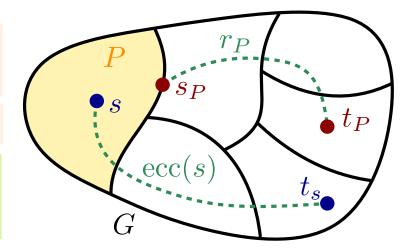
By triangle-ineq:

$$\operatorname{dist}_{G}(s_{P}, t) - \Delta \leq \operatorname{dist}_{G}(s, t) \leq \operatorname{dist}_{G}(s_{P}, t) + \Delta$$

$$\Rightarrow \operatorname{dist}(s_{P}, t_{s}) \geq r_{P} - 2\Delta$$

The relevant region of P is

$$R_P := \{ v \in G \mid \operatorname{dist}_G(s_P, v) \ge r_P - 2\Delta \}.$$



The modified r-ball of $s \in P$ is $\widehat{N}^r(s) := N^r(s) \cap R_P$. Let $\widehat{\mathcal{N}} := \{\widehat{N}^r(s)\}_{r,s}$.

- Step 1. Fix Δ , decompose G into $O(n/\Delta)$ pieces P of (strong) diameter $\leq \Delta$ s.t. total boundary is small: $\sum_P |\partial P| = \widetilde{O}(n/\Delta)$.
- Step 2. Run BFS from each boundary vertex $v \in \bigcup_P \partial P$, obtaining also ecc(v). Set $r_P := \max_{v \in \partial P} ecc(v)$.

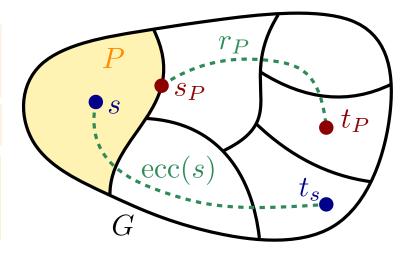
By triangle-ineq:

$$\operatorname{dist}_{G}(s_{P}, t) - \Delta \leq \operatorname{dist}_{G}(s, t) \leq \operatorname{dist}_{G}(s_{P}, t) + \Delta$$

$$\Rightarrow \operatorname{dist}(s_{P}, t_{s}) \geq r_{P} - 2\Delta$$

The relevant region of P is

$$R_P := \{ v \in G \mid \operatorname{dist}_G(s_P, v) \ge r_P - 2\Delta \}.$$



The modified r-ball of $s \in P$ is $\widehat{N}^r(s) := N^r(s) \cap R_P$. Let $\widehat{\mathcal{N}} := \{\widehat{N}^r(s)\}_{r,s}$.

Lemma

The modified ball system $\widehat{\mathcal{N}}$ has the same VC-dim as \mathcal{N} and $|\widehat{\mathcal{N}}| = O(\Delta n)$

Step 3. Compute stabbing path λ for $\hat{\mathcal{N}}$. For each P and each $s \in P$, from $r = r_P - 3\Delta - 1$ to $r = r_P + \Delta$, compute $\operatorname{Rep}_{\lambda}(\hat{N}^r(s))$.

Efficient ball growing?

Step 3. Compute stabbing path λ for \hat{N} . For each P and each $s \in P$, from $r = r_P - 3\Delta - 1$ to $r = r_P + \Delta$, compute $\mathrm{Rep}_{\lambda}(\hat{N}^r(s))$.

Goal: Given $\operatorname{Rep}_{\lambda}(\widehat{N}^r(v))$ for all $v \in V(G)$, compute $\operatorname{Rep}_{\lambda}(\widehat{N}^{r+1}(s))$

Efficient ball growing?

Step 3. Compute stabbing path λ for \hat{N} . For each P and each $s \in P$, from $r = r_P - 3\Delta - 1$ to $r = r_P + \Delta$, compute $\mathrm{Rep}_{\lambda}(\hat{N}^r(s))$.

Goal: Given $\operatorname{Rep}_{\lambda}(\widehat{N}^r(v))$ for all $v \in V(G)$, compute $\operatorname{Rep}_{\lambda}(\widehat{N}^{r+1}(s))$

$$\mathsf{Rep}_{\lambda}(\widehat{N}^{r+1}(s)) = \bigcup_{v \in N(s)} \mathsf{Rep}_{\lambda}(\widehat{N}^{r}(v))$$

Efficient ball growing?

Step 3. Compute stabbing path λ for \hat{N} . For each P and each $s \in P$, from $r = r_P - 3\Delta - 1$ to $r = r_P + \Delta$, compute $\mathrm{Rep}_{\lambda}(\hat{N}^r(s))$.

Goal: Given $\operatorname{Rep}_{\lambda}(\widehat{N}^r(v))$ for all $v \in V(G)$, compute $\operatorname{Rep}_{\lambda}(\widehat{N}^{r+1}(s))$

$$\operatorname{Rep}_{\lambda}(\widehat{N}^{r+1}(s)) = \bigcup_{v \in N(s)} \operatorname{Rep}_{\lambda}(\widehat{N}^{r}(v))$$
 Can be done directly in sparse graphs as $|N(s)|$ is (amortized) small

Efficient ball growing?

Step 3. Compute stabbing path λ for \hat{N} . For each P and each $s \in P$, from $r = r_P - 3\Delta - 1$ to $r = r_P + \Delta$, compute $\mathrm{Rep}_{\lambda}(\hat{N}^r(s))$.

Goal: Given $\operatorname{Rep}_{\lambda}(\widehat{N}^r(v))$ for all $v \in V(G)$, compute $\operatorname{Rep}_{\lambda}(\widehat{N}^{r+1}(s))$

$$\operatorname{Rep}_{\lambda}(\widehat{N}^{r+1}(s)) = \bigcup_{v \in N(s)} \operatorname{Rep}_{\lambda}(\widehat{N}^{r}(v))$$
 Can be done directly in sparse graphs as $|N(s)|$ is (amortized) small

In dense graphs, we need to solve:

Interval Searching

Given set of objects \mathcal{O} , each associated with some integer intervals of [1:n], design a data structure that:

for query $q \in \mathcal{O}$ returns the union of the representations of the objects $o \in \mathcal{O}$ that intersect q.

Efficient ball growing?

Step 3. Compute stabbing path λ for \hat{N} . For each P and each $s \in P$, from $r = r_P - 3\Delta - 1$ to $r = r_P + \Delta$, compute $\mathrm{Rep}_{\lambda}(\hat{N}^r(s))$.

Goal: Given $\operatorname{Rep}_{\lambda}(\widehat{N}^r(v))$ for all $v \in V(G)$, compute $\operatorname{Rep}_{\lambda}(\widehat{N}^{r+1}(s))$

$$\operatorname{Rep}_{\lambda}(\widehat{N}^{r+1}(s)) = \bigcup_{v \in N(s)} \operatorname{Rep}_{\lambda}(\widehat{N}^{r}(v))$$
 Can be done directly in sparse graphs as $|N(s)|$ is (amortized) small

In dense graphs, we need to solve:

Interval Searching

Given set of objects \mathcal{O} , each associated with some integer intervals of [1:n], design a data structure that:

for query $q \in \mathcal{O}$ returns the union of the representations of the objects $o \in \mathcal{O}$ that intersect q.

We need*: $\widetilde{O}(\text{input size})$ preprocessing and $\widetilde{O}(\text{output size})$ query time

DSP1: Interval Searching

Given set of objects \mathcal{O} , each associated with some integer intervals of [1:n], design a data structure that:

for query $q \in \mathcal{O}$ returns the union of the representations of the objects $o \in \mathcal{O}$ that intersect q.

DSP1: Interval Searching

Given set of objects \mathcal{O} , each associated with some integer intervals of [1:n], design a data structure that:

for query $q \in \mathcal{O}$ returns the union of the representations of the objects $o \in \mathcal{O}$ that intersect q.

Reduction with polylog preprocessing and query overhead

DSP2: Interval Cover

Given objects \mathcal{O} and $I: \mathcal{O} \to [1:n]$, design a data structure that: for query $q \in \mathcal{O}$ decides if the union of $\{I(o) \mid o \in \mathcal{O} \text{ intersects } q\}$ covers I(q).

Hard and non-decomposable range searching...

DSP1: Interval Searching

Given set of objects \mathcal{O} , each associated with some integer intervals of [1:n], design a data structure that:

for query $q \in \mathcal{O}$ returns the union of the representations of the objects $o \in \mathcal{O}$ that intersect q.

Reduction with polylog preprocessing and query overhead

DSP2: Interval Cover

Given objects \mathcal{O} and $I:\mathcal{O}\to [1:n]$, design a data structure that: for query $q\in\mathcal{O}$ decides if the union of $\{I(o)\mid o\in\mathcal{O} \text{ intersects } q\}$ covers I(q).

Hard and non-decomposable range searching...

 \sim Reduction with $n^{o(1)}$ preprocessing and query overhead Slice into blocks of size b.

DSP3: Rainbow colored intersection searching

Given objects \mathcal{O} and $C: \mathcal{O} \to [n]$ (color), design a data structure that: for query $q \in \mathcal{O}$ decides if all colors appear in $\{C(o) \mid o \in \mathcal{O} \text{ intersects } q\}$.

DSP1: Interval Searching

Given set of objects \mathcal{O} , each associated with some integer intervals of [1:n], design a data structure that:

for query $q \in \mathcal{O}$ returns the union of the representations of the objects $o \in \mathcal{O}$ that intersect q.

Reduction with polylog preprocessing and query overhead

DSP2: Interval Cover

Given objects \mathcal{O} and $I:\mathcal{O}\to [1:n]$, design a data structure that: for query $q\in\mathcal{O}$ decides if the union of $\{I(o)\mid o\in\mathcal{O} \text{ intersects } q\}$ covers I(q).

Hard and non-decomposable range searching...

 \sim Reduction with $n^{o(1)}$ preprocessing and query overhead Slice into blocks of size b.

DSP3: Rainbow colored intersection searching

Given objects \mathcal{O} and $C: \mathcal{O} \to [n]$ (color), design a data structure that: for query $q \in \mathcal{O}$ decides if all colors appear in $\{C(o) \mid o \in \mathcal{O} \text{ intersects } q\}$.

Theorem

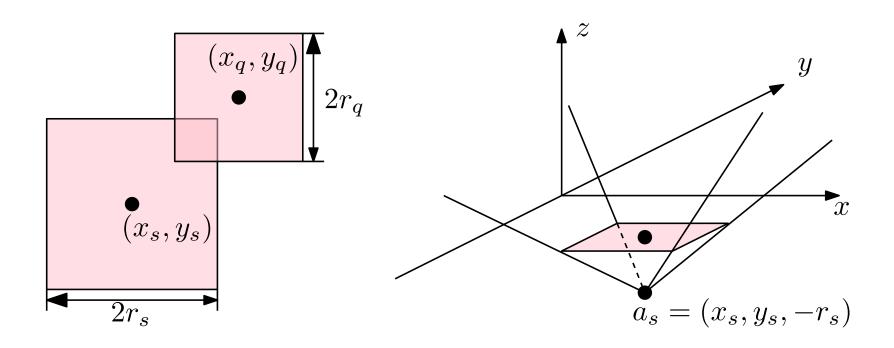
If we can construct in $\widetilde{O}(|\mathcal{O}_{RC}|)$ time a data structure \mathcal{D}_{RC} with $\widetilde{O}(1)$ query for DSP3, then for any $b \in [1,n]$, we can construct a data structure for DSP2 with total run time $\widetilde{O}(N_{IC} \cdot b + L_{IC}/b)$.

Rainbow colored intersection searching

Given squares \mathcal{O} and coloring $C:\mathcal{O}\to[n]$, design a data structure that: given square $q\in\mathcal{O}$ decides if all colors appear in $\{C(o)\mid o\in\mathcal{O} \text{ intersects } q\}$.

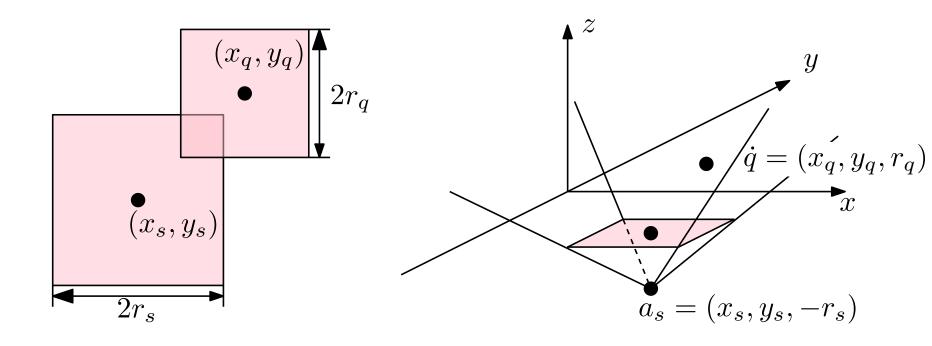
Rainbow colored intersection searching

Given squares \mathcal{O} and coloring $C: \mathcal{O} \to [n]$, design a data structure that: given square $q \in \mathcal{O}$ decides if all colors appear in $\{C(o) \mid o \in \mathcal{O} \text{ intersects } q\}$.



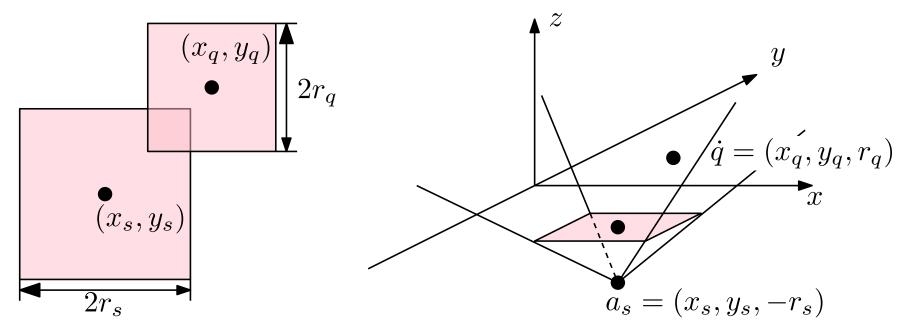
Rainbow colored intersection searching

Given squares \mathcal{O} and coloring $C: \mathcal{O} \to [n]$, design a data structure that: given square $q \in \mathcal{O}$ decides if all colors appear in $\{C(o) \mid o \in \mathcal{O} \text{ intersects } q\}$.



Rainbow colored intersection searching

Given squares \mathcal{O} and coloring $C: \mathcal{O} \to [n]$, design a data structure that: given square $q \in \mathcal{O}$ decides if all colors appear in $\{C(o) \mid o \in \mathcal{O} \text{ intersects } q\}$.

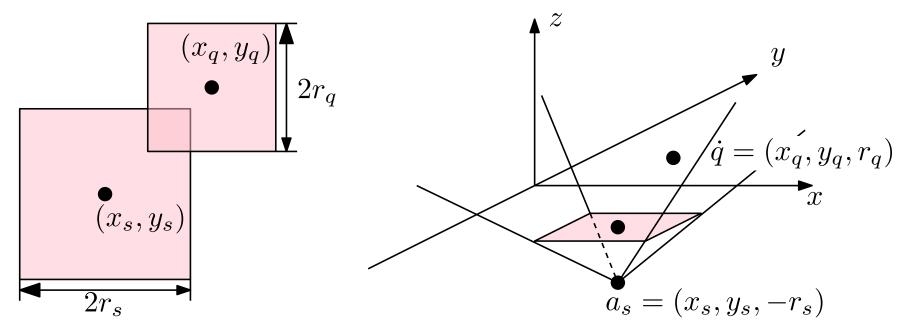


Rough idea:

• q has intersection with color class i iff \dot{q} is above lower envelope of color-i cones.

Rainbow colored intersection searching

Given squares \mathcal{O} and coloring $C: \mathcal{O} \to [n]$, design a data structure that: given square $q \in \mathcal{O}$ decides if all colors appear in $\{C(o) \mid o \in \mathcal{O} \text{ intersects } q\}$.

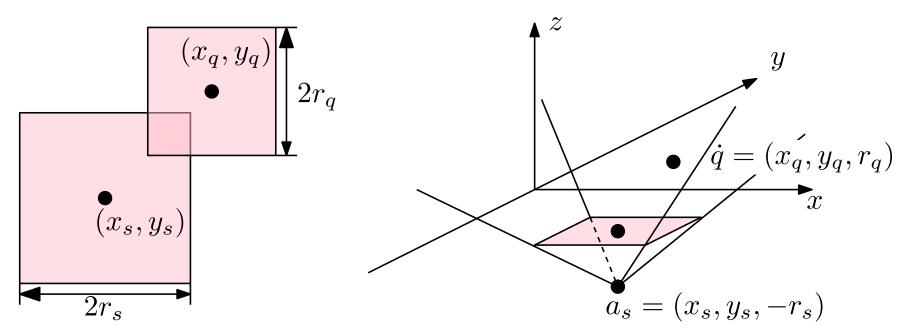


Rough idea:

- q has intersection with color class i iff \dot{q} is above lower envelope of color-i cones.
- for each color class, compute lower envelope of cones

Rainbow colored intersection searching

Given squares \mathcal{O} and coloring $C: \mathcal{O} \to [n]$, design a data structure that: given square $q \in \mathcal{O}$ decides if all colors appear in $\{C(o) \mid o \in \mathcal{O} \text{ intersects } q\}$.

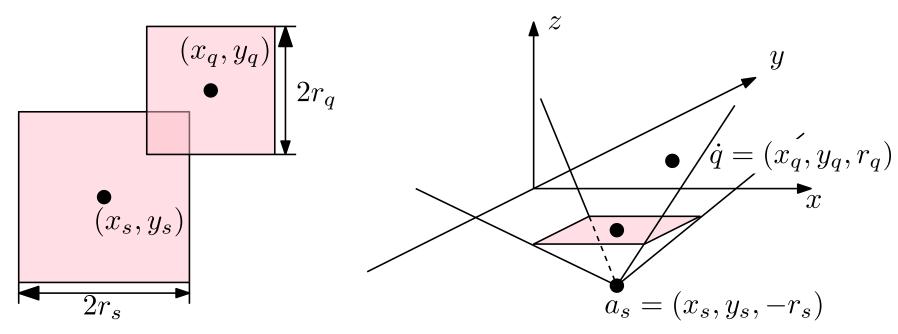


Rough idea:

- ullet q has intersection with color class i iff \dot{q} is above lower envelope of color-i cones.
- for each color class, compute lower envelope of cones
- slice the space above lower envelope into pw disjoint slabs of fixed directions

Rainbow colored intersection searching

Given squares \mathcal{O} and coloring $C: \mathcal{O} \to [n]$, design a data structure that: given square $q \in \mathcal{O}$ decides if all colors appear in $\{C(o) \mid o \in \mathcal{O} \text{ intersects } q\}$.



Rough idea:

- q has intersection with color class i iff \dot{q} is above lower envelope of color-i cones.
- for each color class, compute lower envelope of cones
- slice the space above lower envelope into pw disjoint slabs of fixed directions
- build (reverse) range counting data structure on all slabs

Running time analysis for squares

Stabbing path λ gives:

$$\sum_{P} \sum_{s \in P} \sum_{r=r_P-2\Delta}^{r_P+\Delta} |\mathsf{Rep}_{\lambda}(\hat{N}^r[s])| \ = \ \widetilde{O}(\Delta \cdot n^{2-1/d}) = \widetilde{O}(\Delta \cdot n^{7/4}) \quad (d=4)$$

Running time analysis for squares

Stabbing path λ gives:

$$\sum_{P} \sum_{s \in P} \sum_{r=r_P-2\Delta}^{r_P+\Delta} |\mathsf{Rep}_{\lambda}(\hat{N}^r[s])| \ = \ \widetilde{O}(\Delta \cdot n^{2-1/d}) = \widetilde{O}(\Delta \cdot n^{7/4}) \quad (d=4)$$

The total length of all the intervals for $s \in P$ is at most $2|P| \cdot |R_P| = O(|P| \cdot n)$. Ball growing running time for fixed P, r:

$$\widetilde{O}\Big(b \cdot \sum_{s \in P} \Big(|\mathsf{Rep}_{\lambda_P}(\hat{N}^{r-1}[s])| + |\mathsf{Rep}_{\lambda_P}(\hat{N}^r[s])| \Big) + |P|n/b \Big)$$

Running time analysis for squares

Stabbing path λ gives:

$$\sum_{P} \sum_{s \in P} \sum_{r=r_P-2\Delta}^{r_P+\Delta} |\mathsf{Rep}_{\lambda}(\hat{N}^r[s])| \ = \ \widetilde{O}(\Delta \cdot n^{2-1/d}) = \widetilde{O}(\Delta \cdot n^{7/4}) \quad (d=4)$$

The total length of all the intervals for $s \in P$ is at most $2|P| \cdot |R_P| = O(|P| \cdot n)$. Ball growing running time for fixed P, r:

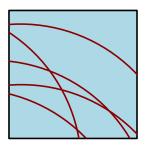
$$\widetilde{O}\Big(b \cdot \sum_{s \in P} \Big(|\mathsf{Rep}_{\lambda_P}(\hat{N}^{r-1}[s])| + |\mathsf{Rep}_{\lambda_P}(\hat{N}^r[s])|\Big) + |P|n/b\Big)$$

BFSes on
$$\partial P$$
 Constructing λ
$$\widetilde{O}(n^2/\Delta + n^{5/4}) + \sum_{P} \sum_{r=r_P-2\Delta}^{r_P+\Delta} \widetilde{O}\left(b \cdot \sum_{s \in P} \left((|\mathsf{Rep}_{\lambda_P}(\hat{N}^{r-1}[s])| + |\mathsf{Rep}_{\lambda_P}(\hat{N}^{r}[s])|\right) + |P|n \right)$$

$$= \widetilde{O}(n^2/\Delta + n^{5/4}) + \widetilde{O}(b\Delta \cdot n^{7/4}) + \widetilde{O}(n^2\Delta/b) \quad (d=4)$$

$$= \widetilde{O}(n^{2-1/16}). \quad \text{(for optimal choices of } b = \Delta^2 \text{ and } \Delta = n^{1/16})$$

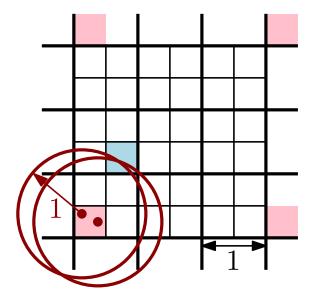
Base data strucutre problem is related to Hopcroft's problem, $\Omega(n^{1/3})$ query time likely.

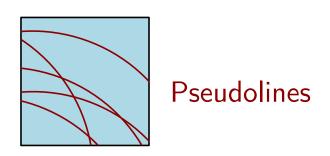


Base data strucutre problem is related to Hopcroft's problem, $\Omega(n^{1/3})$ query time likely.

Base data strucutre problem is related to Hopcroft's problem, $\Omega(n^{1/3})$ query time likely.

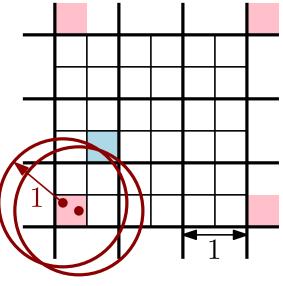
Idea: split into O(1) modulo classes.

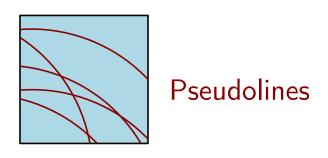




Base data strucutre problem is related to Hopcroft's problem, $\Omega(n^{1/3})$ query time likely.

Idea: split into O(1) modulo classes.

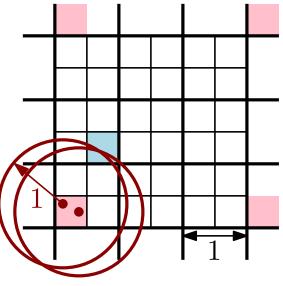


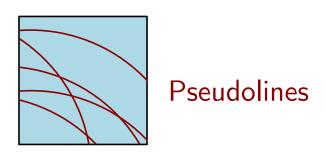


- The intermediate sets are no longer neighborhood balls (new set system).
 - \rightarrow Fortunately VC-dimension is still ≤ 4 , but only for fixed radius r.

Base data strucutre problem is related to Hopcroft's problem, $\Omega(n^{1/3})$ query time likely.

Idea: split into O(1) modulo classes.

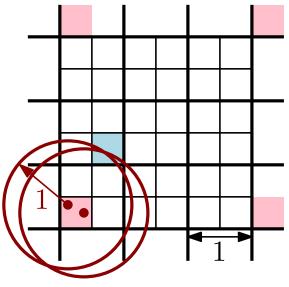


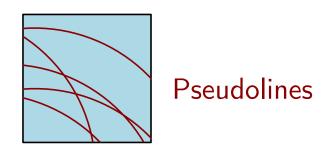


- The intermediate sets are no longer neighborhood balls (new set system).
 - \rightarrow Fortunately VC-dimension is still ≤ 4 , but only for fixed radius r.
- Need new stabbing path & representations for each r (and each P)

Base data strucutre problem is related to Hopcroft's problem, $\Omega(n^{1/3})$ query time likely.

Idea: split into O(1) modulo classes.

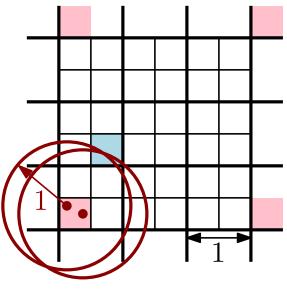


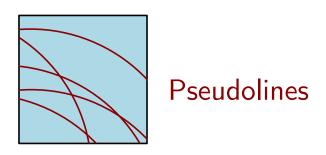


- The intermediate sets are no longer neighborhood balls (new set system).
 - \rightarrow Fortunately VC-dimension is still ≤ 4 , but only for fixed radius r.
- Need new stabbing path & representations for each r (and each P)
- Need to work with balls from two or three different types.
 - \rightarrow Fortunately, the combined set systems still have VC-dimension ≤ 8 .

Base data strucutre problem is related to Hopcroft's problem, $\Omega(n^{1/3})$ query time likely.

Idea: split into O(1) modulo classes.





- The intermediate sets are no longer neighborhood balls (new set system).
 - \rightarrow Fortunately VC-dimension is still ≤ 4 , but only for fixed radius r.
- Need new stabbing path & representations for each r (and each P)
- Need to work with balls from two or three different types.
 - \rightarrow Fortunately, the combined set systems still have VC-dimension ≤ 8 .
- Switching stabbing paths is too costly if pieces are small.
 - \rightarrow Work only with pieces larger than a threshold; for small pieces, we switch to a different algo (based on distance compression)

VC-dim d + efficient interval cover DS $\leadsto O(n^{2-f(d)})$ diameter computation/distance oracle

VC-dim d + efficient interval cover DS $\leadsto O(n^{2-f(d)})$ diameter computation/distance oracle

Work in progress:

• $\widetilde{O}(n^{4/3})$ for Diameter-2 in UDG

VC-dim d + efficient interval cover DS $\leadsto O(n^{2-f(d)})$ diameter computation/distance oracle

Work in progress:

- $\widetilde{O}(n^{4/3})$ for Diameter-2 in UDG
- Subquadratic algo for DIAMETER-2 and DIAMETER-3 of unit cubes in \mathbb{R}^3 .

VC-dim d + efficient interval cover DS $\rightsquigarrow O(n^{2-f(d)})$ diameter computation/distance oracle

Work in progress:

- $\widetilde{O}(n^{4/3})$ for Diameter-2 in UDG
- Subquadratic algo for DIAMETER-2 and DIAMETER-3 of unit cubes in \mathbb{R}^3 .
- Algorithms/hardness for DIAMETER-k in intersection graphs. Sometimes d = g(k), gives $O(n^{2-f(k)})$ diameter algo

VC-dim d + efficient interval cover DS $\leadsto O(n^{2-f(d)})$ diameter computation/distance oracle

Work in progress:

- $\widetilde{O}(n^{4/3})$ for Diameter-2 in UDG
- Subquadratic algo for DIAMETER-2 and DIAMETER-3 of unit cubes in \mathbb{R}^3 .
- Algorithms/hardness for DIAMETER-k in intersection graphs. Sometimes d = g(k), gives $O(n^{2-f(k)})$ diameter algo

(Very bold) Conjecture

There is some f(d) > 0 such that if \mathcal{G} is a (nice?) graph class with distance VC-dim $\leq d$, then there is a $O(n^{2-f(d)})$ time algorithm for diameter.

VC-dim d + efficient interval cover DS $\rightsquigarrow O(n^{2-f(d)})$ diameter computation/distance oracle

Work in progress:

- $\widetilde{O}(n^{4/3})$ for Diameter-2 in UDG
- Subquadratic algo for DIAMETER-2 and DIAMETER-3 of unit cubes in \mathbb{R}^3 .
- Algorithms/hardness for DIAMETER-k in intersection graphs. Sometimes d = g(k), gives $O(n^{2-f(k)})$ diameter algo

(Very bold) Conjecture

There is some f(d) > 0 such that if \mathcal{G} is a (nice?) graph class with distance VC-dim $\leq d$, then there is a $O(n^{2-f(d)})$ time algorithm for diameter.

Open:

- ?1 disk graphs
 (needs data strucutre breakthrough)?
- **?2** Super-linear fine-grained lower bounds?

VC-dim d + efficient interval cover DS $\leadsto O(n^{2-f(d)})$ diameter computation/distance oracle

Work in progress:

- $\widetilde{O}(n^{4/3})$ for Diameter-2 in UDG
- Subquadratic algo for DIAMETER-2 and DIAMETER-3 of unit cubes in \mathbb{R}^3 .
- Algorithms/hardness for DIAMETER-k in intersection graphs. Sometimes d=g(k), gives $O(n^{2-f(k)})$ diameter algo

(Very bold) Conjecture

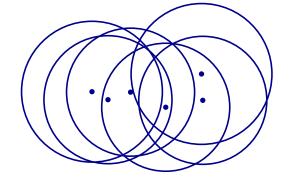
There is some f(d) > 0 such that if \mathcal{G} is a (nice?) graph class with distance VC-dim $\leq d$, then there is a $O(n^{2-f(d)})$ time algorithm for diameter.

Open:

?1 disk graphs
 (needs data strucutre breakthrough)?

?2 Super-linear fine-grained lower bounds?

Diameter-2 for disks or radii $[1, 1 + \varepsilon]$?



VC-dim d + efficient interval cover DS $\leadsto O(n^{2-f(d)})$ diameter computation/distance oracle

Work in progress:

- $\widetilde{O}(n^{4/3})$ for Diameter-2 in UDG
- Subquadratic algo for DIAMETER-2 and DIAMETER-3 of unit cubes in \mathbb{R}^3 .
- Algorithms/hardness for DIAMETER-k in intersection graphs. Sometimes d = g(k), gives $O(n^{2-f(k)})$ diameter algo

(Very bold) Conjecture

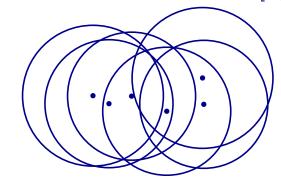
There is some f(d) > 0 such that if \mathcal{G} is a (nice?) graph class with distance VC-dim $\leq d$, then there is a $O(n^{2-f(d)})$ time algorithm for diameter.

Open:

- ?1 disk graphs
 (needs data strucutre breakthrough)?
- ?2 Super-linear fine-grained lower bounds?

Thanks for listening!

Diameter-2 for disks or radii $[1, 1 + \varepsilon]$?



Diameter:

graph class	best previous		new
planar	$\widetilde{O}(n^{5/3})$	[Cab18, GKM ⁺ 21]	
K_h -minor-free	$\widetilde{O}(n^{2-1/(3h-1)})$	[DHV22, LW24]	$\widetilde{O}(n^{2-1/(2h-2)})$
VC-dimbounded	$\widetilde{O}(\min\{Dmn^{1-1/d}, mn\})$	[DHV22, DKP24]	$\widetilde{O}(mn^{1-1/(2d)})$
unit square	$\widetilde{O}(\min\{Dn^{7/4}, n^2\})$	[DKP24]	$O^*(n^{2-1/8})$
arbitrary square	$\widetilde{O}(n^2)$	[CS19]	$\widetilde{O}(n^{2-1/12})$
unit disk	$O(n^2\sqrt{\frac{\log\log n}{\log n}})$	[CS16]	$O^*(n^{2-1/18})$

Distance oracle (construction time/space) Query: $\widetilde{O}(1)$.

graph class	best previous		new
planar	$n^{3/2+o(1)}, n^{1+o(1)}$	[CGL ⁺ 23]	
K_h -minor-free	$\widetilde{O}(n^{2-1/(3h-1)})$	[LW24]	
VC-dimbounded	$O(mn), O(n^2)$	folklore	$\widetilde{O}(mn^{1-1/(4d+1)})$
unit square	$\widetilde{O}(n^2)$	[CS19]	$O^*(n^{2-1/16})$
arbitrary square	$\widetilde{O}(n^2)$	[CS19]	$\widetilde{O}(n^{2-1/20})$
unit disk	$O(n^2\sqrt{\frac{\log\log n}{\log n}})$	[CS16]	$O^*(n^{2-1/20})$