

Real Preferences Under Arbitrary Norms

Joshua Zeitlin and Corinna Coupette

Given:

Voters
$$V = 1 2 3$$

Alternatives
$$A = \begin{bmatrix} a \\ b \end{bmatrix}$$
 $\begin{bmatrix} c \\ d \end{bmatrix}$

Given:

Voters
$$V = 1 2 3$$

Alternatives
$$A = \begin{bmatrix} a \\ b \end{bmatrix}$$
 $\begin{bmatrix} c \\ d \end{bmatrix}$

Most voting rules view preferences as rankings:

$$1: a \succ b \succ c \succ d$$

$$2: b \succ a \succ d \succ c$$

$$3: d \succ c \succ a \succ b$$

Given:

Voters
$$V = 1 2 3$$

Alternatives $A = \begin{bmatrix} a \\ b \end{bmatrix}$ $\begin{bmatrix} c \\ d \end{bmatrix}$

Most voting rules view preferences as rankings:

$$1: a \succ b \succ c \succ d$$

$$2: b \succ a \succ d \succ c$$

$$3: d \succ c \succ a \succ b$$

But *rankings* emanate from a *metric space*, which also determines *utilities*:

Given:

Voters
$$V = 1 2 3$$

Alternatives
$$A = \begin{bmatrix} a \\ b \end{bmatrix}$$
 $\begin{bmatrix} c \\ d \end{bmatrix}$

Most voting rules view preferences as rankings:

$$1: a \succ b \succ c \succ d$$

$$2: b \succ a \succ d \succ c$$

$$3: d \succ c \succ a \succ b$$

But *rankings* emanate from a *metric space*, which also determines *utilities*:

Given:

Voters
$$V = 1 2 3$$

Alternatives $A = \begin{bmatrix} a \\ b \end{bmatrix}$ $\begin{bmatrix} c \\ d \end{bmatrix}$

Most voting rules view preferences as rankings:

$$1: a \succ b \succ c \succ d$$

$$2: b \succ a \succ d \succ c$$

$$3: d \succ c \succ a \succ b$$

But *rankings* emanate from a *metric space*, which also determines *utilities*:

Given:

Voters
$$V = 1 2 3$$

Alternatives
$$A = \begin{bmatrix} a \\ b \end{bmatrix}$$
 $\begin{bmatrix} c \\ d \end{bmatrix}$

Most voting rules view preferences as rankings:

$$1: a \succ b \succ c \succ d$$

$$2: b \succ a \succ d \succ c$$

$$3: d \succ c \succ a \succ b$$

But *rankings* emanate from a *metric space*, which also determines *utilities*:

... or do they?

Given:

```
Voters V = \{1, ..., n\}

Alternatives A = \{a_1, ..., a_m\}

Strict preferences \succ_i : a_x \succ a_y \Leftrightarrow i prefers a_x over a_y

\rightarrow Preference profile \mathcal{P}_{A,V} = (\succ_1, ..., \succ_n)
```

Given:

```
Voters V = \{1, ..., n\}

Alternatives A = \{a_1, ..., a_m\}

Strict preferences \succ_i : a_x \succ a_y \Leftrightarrow i prefers a_x over a_y

\rightarrow Preference profile \mathcal{P}_{A,V} = (\succ_1, ..., \succ_n)
```

Rank-preserving embeddings

Given a preference profile \mathcal{P} , a dimension d, and a normed real vector space $(\mathbb{R}^d, \|\cdot\|)$, an assignment of coordinates $\mathbf{a}_j \in \mathbb{R}^d$ to alternatives $a_j \in A$ and coordinates $\mathbf{v}_i \in \mathbb{R}^d$ to voters $i \in V$ constitutes a rank-preserving embedding of P into $(\mathbb{R}^d, \|\cdot\|)$ if $a_j \succsim_i a_k \iff \|\mathbf{v}_i - \mathbf{a}_j\| \le \|\mathbf{v}_i - \mathbf{a}_k\|$.

 \mathbb{R}^2 1: $a \succ b \succ c \succ d$

Given:

Voters
$$V = \{1, \ldots, n\}$$

Alternatives $A = \{a_1, \dots, a_m\}$

Strict preferences $\succ_i : a_x \succ a_y \Leftrightarrow i$ prefers a_x over a_y

 \rightarrow Preference profile $\mathcal{P}_{A,V} = (\succ_1, \ldots, \succ_n)$

Rank-preserving embeddings

Given a preference profile \mathcal{P} , a dimension d, and a normed real vector space $(\mathbb{R}^d, \|\cdot\|)$, an assignment of coordinates $\mathbf{a}_j \in \mathbb{R}^d$ to alternatives $a_j \in A$ and coordinates $\mathbf{v}_i \in \mathbb{R}^d$ to voters $i \in V$ constitutes a rank-preserving embedding of P into $(\mathbb{R}^d, \|\cdot\|)$ if $a_j \succsim_i a_k \iff \|\mathbf{v}_i - \mathbf{a}_j\| \le \|\mathbf{v}_i - \mathbf{a}_k\|$.

Given:

Voters $V = \{1, \ldots, n\}$

Alternatives $A = \{a_1, \dots, a_m\}$

Strict preferences $\succ_i : a_x \succ a_y \iff i$ prefers a_x over a_y

 \rightarrow Preference profile $\mathcal{P}_{A,V} = (\succ_1, \ldots, \succ_n)$

Rank-preserving embeddings

Given a preference profile \mathcal{P} , a dimension d, and a normed real vector space $(\mathbb{R}^d, \|\cdot\|)$, an assignment of coordinates $\mathbf{a}_j \in \mathbb{R}^d$ to alternatives $a_j \in A$ and coordinates $\mathbf{v}_i \in \mathbb{R}^d$ to voters $i \in V$ constitutes a rank-preserving embedding of P into $(\mathbb{R}^d, \|\cdot\|)$ if $a_i \succsim_i a_k \iff \|\mathbf{v}_i - \mathbf{a}_i\| \le \|\mathbf{v}_i - \mathbf{a}_k\|$.

Given:

Voters $V = \{1, \ldots, n\}$

Alternatives $A = \{a_1, \dots, a_m\}$

Strict preferences $\succ_i : a_x \succ a_y \Leftrightarrow i$ prefers a_x over a_y

 \rightarrow Preference profile $\mathcal{P}_{A,V} = (\succ_1, \ldots, \succ_n)$

Rank-preserving embeddings

Given a preference profile \mathcal{P} , a dimension d, and a normed real vector space $(\mathbb{R}^d, \|\cdot\|)$, an assignment of coordinates $\mathbf{a}_j \in \mathbb{R}^d$ to alternatives $a_j \in A$ and coordinates $\mathbf{v}_i \in \mathbb{R}^d$ to voters $i \in V$ constitutes a rank-preserving embedding of P into $(\mathbb{R}^d, \|\cdot\|)$ if $a_i \succeq_i a_k \iff \|\mathbf{v}_i - \mathbf{a}_i\| \leq \|\mathbf{v}_i - \mathbf{a}_k\|$.

Results

Guiding question (generalizing Bogomolnaia and Lasier 2007)

Given the number of voters n and the number of alternatives m, for which dimensions d and $norms \| \cdot \|$ are rank-preserving embeddings guaranteed to exist?

Results

Guiding question (generalizing Bogomolnaia and Lasier 2007)

Given the number of voters n and the number of alternatives m, for which dimensions d and $norms \| \cdot \|$ are rank-preserving embeddings guaranteed to exist?

Theorem 1 (Rank embeddability under p-norms)

Given m alternatives A and n voters V with preferences over these alternatives, a preference profile $P_{A,V}$ rank-embeds into $(\mathbb{R}^d, \|\cdot\|_p)$, for all $1 \le p \le \infty$, if $d \ge \min\{n, m-1\}$.

Results

Guiding question (generalizing Bogomolnaia and Lasier 2007)

Given the number of voters n and the number of alternatives m, for which dimensions d and $norms \| \cdot \|$ are rank-preserving embeddings guaranteed to exist?

Theorem 1 (Rank embeddability under p-norms)

Given m alternatives A and n voters V with preferences over these alternatives, a preference profile $P_{A,V}$ rank-embeds into $(\mathbb{R}^d, \|\cdot\|_p)$, for all $1 \le p \le \infty$, if $d \ge \min\{n, m-1\}$.

Theorem 2 (Rank embeddability for two [types of] voters under arbitrary norms)

Given m alternatives, let P be a preference profile featuring two (types of) voters. Then P rank-embeds into $(\mathbb{R}^2, \|\cdot\|)$ for any norm $\|\cdot\|$ on \mathbb{R}^2 .

Rank embeddability under *p*-norms: $d \ge n, p > 1$

Construction: Alternative-Rank Embedding

- Choose $c \in \mathbb{R}$
- Voters: $\mathbf{v}_i = c \cdot \mathbf{e}_i$ for $i \in V$
- Alternatives: $\mathbf{a}_j = (-\operatorname{rk}_i j \mid i \in [n])$ for $a_j \in A$

Rank embeddability under *p*-norms: $d \ge n, p > 1$

Construction: Alternative-Rank Embedding

- Choose $c \in \mathbb{R}$
- Voters: $\mathbf{v}_i = c \cdot \mathbf{e}_i$ for $i \in V$
- Alternatives: $\mathbf{a}_j = (-\mathrm{rk}_i j \mid i \in [n])$ for $a_j \in A$

Rank embeddability under *p*-norms: $d \ge n, p > 1$

Construction: Alternative-Rank Embedding

- Choose $c \in \mathbb{R}$
- Voters: $\mathbf{v}_i = c \cdot \mathbf{e}_i$ for $i \in V$
- Alternatives: $\mathbf{a}_j = (-\operatorname{rk}_i j \mid i \in [n])$ for $a_j \in A$

Proof intuition

- Show that we can choose *c* sufficiently large to ensure rank preservation
- 1 : <math>c must satisfy $(c+2)^p - (c+1)^p > (n-1)(n^p-1)$ \rightarrow always exists for fixed n, p
- $p = \infty$: c = m works

Rank embeddability under *p*-norms: $d \ge m - 1$, p > 1

Proposition

For 1 , <math>m > 1, and $1 \le i \ne j \le m$,

$$S := \{ \mathbf{x} \in \mathbb{R}^m \mid ||\mathbf{x} - \mathbf{e}_i||_p = ||\mathbf{x} - \mathbf{e}_j||_p \}$$
$$= \{ \mathbf{x} \in \mathbb{R}^m \mid x_i = x_j \}.$$

Proof intuition

Definition + properties of *p*-norms

Rank embeddability under *p*-norms: $d \ge m - 1$, p > 1

Construction: Median-Based Embedding

• Alternatives: $\mathbf{a}_i = \mathbf{e}_i$ for $a_i \in A$ \rightarrow All \mathbf{a}_i lie on $\mathcal{P} := \{\mathbf{x} \mid x_1 + \dots + x_m = 1\}$

• Voters: Coordinates reflect pairwise comparisons

Rank embeddability under *p*-norms: $d \ge m - 1$, p > 1

Construction: Median-Based Embedding

• Alternatives: $\mathbf{a}_i = \mathbf{e}_i$ for $a_i \in A$ \rightarrow All \mathbf{a}_i lie on $\mathcal{P} := \{ \mathbf{x} \mid x_1 + \dots + x_m = 1 \}$

• Voters: Coordinates reflect pairwise comparisons

Proof intuition

Proposition about hyperplanes (1 $+ linearity of <math>S \cap \mathcal{P}(p = \infty)$

Rank embeddability under arbitrary norms: d = n = 2

Lemma

With two v_1 , v_2 and a_1 , a_2 placed, we can always place a_3 such that it ranks last for v_1 and between a_1 and a_2 for v_2 .

Proof intuition

Fundamental geometry + properties of norms

Rank embeddability under arbitrary norms: d = n = 2

Lemma

With two v_1 , v_2 and a_1 , a_2 placed, we can always place a_3 such that it ranks last for v_1 and between a_1 and a_2 for v_2 .

Proof intuition

Fundamental geometry + properties of norms

Proof intuition (Theorem 2)

Induction on the hypothesis that for any v_1, v_2 placed at $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$, there exist $\mathbf{a}_1, \dots, \mathbf{a}_m$ s.t. the preference orderings are preserved and $\mathbf{v}_2 \in \overline{B(\mathbf{v}_1, \max\{||\mathbf{v}_1 - \mathbf{a}_i|| || 1 \le i \le m\})}^c$.

Discussion

Theorem 1 (Rank embeddability under p-norms)

Given m alternatives A and n voters V with preferences over these alternatives, a preference profile $\mathcal{P}_{A,V}$ rank-embeds into $(\mathbb{R}^d, \|\cdot\|_p)$, for all $1 \le p \le \infty$, if $d \ge \min\{n, m-1\}$.

Theorem 2 (Rank embeddability for two [types of] voters under arbitrary norms)

Given m alternatives, let \mathcal{P} be a preference profile featuring two (types of) voters. Then \mathcal{P} rank-embeds into $(\mathbb{R}^2, \|\cdot\|)$ for any norm $\|\cdot\|$ on \mathbb{R}^2 .

Discussion

Theorem 1 (Rank embeddability under p-norms)

Given m alternatives A and n voters V with preferences over these alternatives, a preference profile $\mathcal{P}_{A,V}$ rank-embeds into $(\mathbb{R}^d, \|\cdot\|_p)$, for all $1 \le p \le \infty$, if $d \ge \min\{n, m-1\}$.

Theorem 2 (Rank embeddability for two [types of] voters under arbitrary norms)

Given m alternatives, let \mathcal{P} be a preference profile featuring two (types of) voters. Then \mathcal{P} rank-embeds into $(\mathbb{R}^2, \|\cdot\|)$ for any norm $\|\cdot\|$ on \mathbb{R}^2 .

Natural extensions

Indifferences, polynomial norms, low-dimensional profiles, multi-norm rank preservation, ...

Discussion

Theorem 1 (Rank embeddability under p-norms)

Given m alternatives A and n voters V with preferences over these alternatives, a preference profile $\mathcal{P}_{A,V}$ rank-embeds into $(\mathbb{R}^d, \|\cdot\|_p)$, for all $1 \le p \le \infty$, if $d \ge \min\{n, m-1\}$.

Theorem 2 (Rank embeddability for two [types of] voters under arbitrary norms)

Given m alternatives, let \mathcal{P} be a preference profile featuring two (types of) voters. Then \mathcal{P} rank-embeds into $(\mathbb{R}^2, \|\cdot\|)$ for any norm $\|\cdot\|$ on \mathbb{R}^2 .

Natural extensions

Indifferences, polynomial norms, low-dimensional profiles, multi-norm rank preservation, ...

Rank-embeddability conjecture

For $d \ge \min\{n, m-1\}$, any preference profile \mathcal{P} with m alternatives and n voters can be rank-embedded into $(\mathbb{R}^d, \|\cdot\|)$, where $\|\cdot\|$ denotes any norm.

Theorem 1 (Rank embeddability under p-norms)

Given m alternatives A and n voters V with preferences over these alternatives, a preference profile $\mathcal{P}_{A,V}$ rank-embeds into $(\mathbb{R}^d, \|\cdot\|_p)$, for all $1 \le p \le \infty$, if $d \ge \min\{n, m-1\}$.

Theorem 2 (Rank embeddability for two [types of] voters under arbitrary norms)

Given m alternatives, let \mathcal{P} be a preference profile featuring two (types of) voters. Then \mathcal{P} rank-embeds into $(\mathbb{R}^2, \|\cdot\|)$ for any norm $\|\cdot\|$ on \mathbb{R}^2 .

Natural extensions

Indifferences, polynomial norms, low-dimensional profiles, multi-norm rank preservation, ...

Rank-embeddability conjecture

For $d \ge \min\{n, m-1\}$, any preference profile P with m alternatives and n voters can be rank-embedded into $(\mathbb{R}^d, \|\cdot\|)$, where $\|\cdot\|$ denotes any norm.

Appendix: Rank embeddability under *p*-norms: $d \ge n, p = 1$

Why do alternative-rank embeddings fail for the Manhattan norm?

Let $c(x) := \inf\{c \mid (c+2)^{1+1/x} - (c+1)^{1+1/x} > (n-1)(n^{1+1/x}-1)\}$, with $n \in \mathbb{N}$ and p > 1. Then $c(\frac{1}{p-1}) \in \Theta(\exp(\frac{1}{p-1}))$.

Proof intuition

Mean value theorem + clever function definitions

Fix: Max-Rank Embedding (Chen et al. 2022)

- Voters: $\mathbf{v}_i = m\mathbf{e}_i$
- Alternatives:

$$a_j^{(i)} = \begin{cases} \operatorname{rk}_i j - \operatorname{mk}_j & i = g_j \\ c + 2\operatorname{rk}_i j + \sum_{k=1}^n (\operatorname{rk}_k j - \operatorname{mk}_j) & i \neq g_j \end{cases}$$
where $g_j = \operatorname{arg} \max_i \operatorname{rk}_i j$ and $\operatorname{mk}_j = \max_i \operatorname{rk}_i j$

• Gist: "very different construction"