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Formalization

Voters V = {1, . . . , n}
Alternatives A = {a1, . . . , am}

Given:

Strict preferences ≻i : ax ≻ ay ⇔ i prefers ax over ay

→ Preference profile PA,V = (≻1, . . . ,≻n)
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Results

Guiding question (generalizing Bogomolnaia and Lasier 2007)

Given the number of voters n and the number of alternatives m, for which dimensions d and
norms ∥ · ∥ are rank-preserving embeddings guaranteed to exist?
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Rank embeddability under p-norms: d ≥ n, p > 1

Construction: Alternative-Rank Embedding
• Choose c ∈ R
• Voters: vi = c · ei for i ∈ V
• Alternatives: aj = (−rkij | i ∈ [n]) for aj ∈ A
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Construction: Alternative-Rank Embedding
• Choose c ∈ R
• Voters: vi = c · ei for i ∈ V
• Alternatives: aj = (−rkij | i ∈ [n]) for aj ∈ A

¥1: a1 ≻ a2 ≻ a3 ≻ a4 ≻ a5

¥2: a2 ≻ a4 ≻ a5 ≻ a1 ≻ a3

Proof intuition
• Show that we can choose c sufficiently

large to ensure rank preservation

• 1 < p < ∞: c must satisfy

(c + 2)p − (c + 1)p > (n − 1) (np − 1)
→ always exists for fixed n, p

• p = ∞: c = m works
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Rank embeddability under p-norms: d ≥ m − 1, p > 1
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Proposition
For 1 < p < ∞, m > 1, and 1 ≤ i ≠ j ≤ m,

S ≔{x ∈ Rm | ∥x − ei ∥p = ∥x − ej ∥p}
={x ∈ Rm | xi = xj} .

Proof intuition
Definition + properties of p-norms
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Construction: Median-Based Embedding
• Alternatives: ai = ei for ai ∈ A
→ All ai lie on P ≔ {x | x1 + · · · + xm = 1}

• Voters: Coordinates reflect pairwise comparisons
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a3 ≻ a2 ≻ a1

Construction: Median-Based Embedding
• Alternatives: ai = ei for ai ∈ A
→ All ai lie on P ≔ {x | x1 + · · · + xm = 1}

• Voters: Coordinates reflect pairwise comparisons

Proof intuition
Proposition about hyperplanes (1 < p < ∞)

+ linearity of S ∩ P (p = ∞)
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Rank embeddability under arbitrary norms: d = n = 2
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Lemma
With two v1, v2 and a1, a2 placed, we can always place a3
such that it ranks last for v1 and between a1 and a2 for v2.

Proof intuition
Fundamental geometry + properties of norms
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Lemma
With two v1, v2 and a1, a2 placed, we can always place a3
such that it ranks last for v1 and between a1 and a2 for v2.

Proof intuition (Theorem 2)
Induction on the hypothesis that for any v1, v2
placed at v1, v2 ∈ R2

, there exist a1, . . . , am
s.t. the preference orderings are preserved and

v2 ∈ B(v1,max{∥v1 − ai ∥ | 1 ≤ i ≤ m})c.

Proof intuition
Fundamental geometry + properties of norms
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Discussion

Theorem 1 (Rank embeddability under p-norms)
Given m alternatives A and n voters V with preferences over these alternatives, a preference

profile PA,V rank-embeds into (Rd, ∥ · ∥p), for all 1 ≤ p ≤ ∞, if d ≥ min{n,m − 1}.

Theorem 2 (Rank embeddability for two [types of] voters under arbitrary norms)
Given m alternatives, let P be a preference profile featuring two (types of) voters. Then P
rank-embeds into (R2, ∥ · ∥) for any norm ∥ · ∥ on R2

.
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DiscussionThank you! Questions, comments, suggestions?
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Joshua Zeitlin and Corinna Coupette · Real Preferences Under Arbitrary Norms 10

Appendix: Rank embeddability under p-norms: d ≥ n, p = 1

Why do alternative-rank embeddings fail for the Manhattan norm?
Let c(x) ≔ inf {c | (c + 2)1+1/x − (c + 1)1+1/x > (n − 1) (n1+1/x − 1)}, with n ∈ N and p > 1.

Then c( 1

p−1 ) ∈ Θ(exp( 1

p−1 )).
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Fix: Max-Rank Embedding (Chen et al. 2022)

• Voters: vi = mei
• Alternatives:

a(i)j =

{
rkij −mkj i = gj

c + 2rkij +
∑n

k=1 (rkkj −mkj) i ≠ gj ,

where gj = argmaxi rkij and mkj = maxi rkij
• Gist: “very different construction”

Proof intuition
Mean value theorem + clever function definitions
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