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The BNSL problem

Input
Families F1, F2, …, Fn of subsets of [n] := {1, 2, …, n} 
and weights wi(S) for each set S ∈ Fi.

Output
A DAG ([n], A), with Ai ∈ Fi, maximizing 
 

w(A) := w1(A1) + w2(A2) + … + wn(An) .
 

Here Ai is the set of parents of node i in A.
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The BNSL problem

Similar to TSP and the Feedback Arc Set problem
 

NP-hard Chickering 1996
 

Can be solved in time O(2n n2) Ott & Miyano 2003, Koivisto & Sood 2004, Singh & Moore 2005, Silander & Myllymäki 2006
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Our results

Theorem 1
BNSL, with subexponentially many potential parent sets, cannot be 
solved classically in time O(cn) for any c < 2 under SETH.
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Hardness – proof idea
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Input: A family T of subsets of [n], each of size at most k, and a number t. 
Question: Is there a subset of [n] of size t intersecting all members of T? 
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Hardness – proof idea

Reduce from the k-Hitting Set problem:  
 

Input: A family T of subsets of [n], each of size at most k, and a number t. 
Question: Is there a subset of [n] of size t intersecting all members of T? 

Theorem [Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, Wahlström 2016]

Under SETH, for any c < 2 there exists a k such that the k-Hitting Set 
problem cannot be solved in time O(cn) by a classical algorithm.

Reduction

1. A simple reduction to a BNSL instance with n + |T| nodes.

2. Sparsify the instance, yielding just n’ := n + O(nk/(k+1)) = n + o(n) nodes.

3. If the BNSL instance could be solved in time O(bn’) with b < 2, then the          
k-Hitting Set problem could be solved in time O(cn) with c = (2b)1/2 < 2.



  

Quantum algorithms

Quantum computation refers to a theoretical model inspired by quantum physics.

Enables solving some problems faster than by classical computation:
● Shor’s algorithm for the Factoring problem
● Grover’s algorithm for unstructured search

No practical value in the foreseeable future:
● The largest integer factored using Shor’s algorithm: 21 = 3 x 7 

Martín-López, Laing, Lawson, Alvarez, Zhou, O'Brien 2012

IQM sells quantum
computer to the
US Department of
Energy's Oak
Ridge National
Laboratory
20.8.2025 / 1 MINUTES READ

CONTACT

Home > news > IQM sells quantum co…

The US Department of Energy's Oak Ridge National Laboratory (ORNL)
has acquired IQM's 20-qubit quantum computer , IQM Radiance,

https://www.enterespoo.fi/
https://www.enterespoo.fi/contact-us
https://www.enterespoo.fi/
https://www.enterespoo.fi/category/news
https://meetiqm.com/press-releases/iqm-to-integrate-quantum-computer-into-oak-ridge-national-laboratorys-hpc-systems/
https://meetiqm.com/press-releases/iqm-to-integrate-quantum-computer-into-oak-ridge-national-laboratorys-hpc-systems/


  

Building blocks
Recursive quantum search Dürr & Høyer 1996; Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2019 
Suppose f(x) is an integer computable for any given x  {1, 2, . . . , m}∈  by a 
bounded-error quantum algorithm in time T. Then there is a bounded-error 
quantum algorithm that computes max f(x) in time O(T m1/2 log m).
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Suppose f(x) is an integer computable for any given x  {1, 2, . . . , m}∈  by a 
bounded-error quantum algorithm in time T. Then there is a bounded-error 
quantum algorithm that computes max f(x) in time O(T m1/2 log m).

Quantum RAM Giovannetti, Lloyd, Maccone 2008 
Any time-T classical algorithm that uses random access memory can be invoked 
as a subroutine for a quantum algorithm in time O(T).

Vertex ordering problems Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2019 
There is a bounded-error quantum algorithm that computes 
 

max { f(L1, 1) + f(L2, 2) + … + f(Ln, n) : L is a linear order on [n] }
 

in time O(1.817n T), supposing f can be evaluated in time T.

13 4 2

L4 L2



  

A speedup for BNSL – proof of Theorem 2
Idea: Formulate BNSL as a vertex ordering problem with an appropriate f.
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A speedup for BNSL – proof of Theorem 2
Idea: Formulate BNSL as a vertex ordering problem with an appropriate f.

Observations

1. Every DAG has a topological ordering of the nodes – a linear order L.

2. Maximize the weight among DAGs A whose topological ordering is L:

for each node i: max { wi(Ai) : Ai is a subset of Li } =: f(Li, i) .

3. Evaluating f takes time linear in the number of potential parents sets.

Or, about a square root of that using quantum computing.

=> a subexponential factor => time O(1.817n).

What if we have exponentially many potential parent sets?
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Idea: Connect with a known space–time tradeoff for vertex ordering problems.

Write max { f(L) : L is a linear order on [n] } as

max { g(P) : P ∈ P } , with  g(P) := max { f(L) : L is a linear extension of P } .

=> BNSL using quantum search in time

O(S |P|1/2 log |P|) = O(1.982n) ,

supposing the number of potential parent sets is O(S). 

Partial order cover  K. & Parviainen 2009 
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solved classically in time O(cn) for any c < 2 under SETH.

Theorem 2
BNSL, with subexponentially many potential parent sets, admits a 
bounded-error quantum algorithm that runs in time O(1.817n).

Theorem 3
BNSL, with O(1.453n) potential parent sets, admits a bounded-error 
quantum algorithm that runs in time O(1.982n).

Open problem 
Does BNSL, with O(2n) potential parent sets, admit a bounded-error quantum 
algorithm that runs in time O(cn) for some c < 2?

Open problem 
Can BNSL, with polynomially many potential parent sets, be solved classically in 
time O(cn) for some c < 2?
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