

Quantum Speedups for
Bayesian Network Structure Learning

Juha Harviainen
University of Helsinki

Mikko Koivisto
University of Helsinki

Kseniya Rychkova
University of Queensland

The BNSL problem

Input
Families F1, F2, …, Fn of subsets of [n] := {1, 2, …, n}
and weights wi(S) for each set S ∈ Fi.

Output
A DAG ([n], A), with Ai ∈ Fi, maximizing

w(A) := w1(A1) + w2(A2) + … + wn(An) .

Here Ai is the set of parents of node i in A.

The BNSL problem

1

2

3

S w1(S)

{ } 3.0

{2} 3.5

{3} 2.0

{2, 3} 4.0

S w3(S)

{ } 2.0

{1} 1.5

{2} 2.5

{1, 2} 3.0

S w2(S)

{ } 1.5

{1} 3.0

{3} 2.0

{1, 3} 5.0

Input
Families F1, F2, …, Fn of subsets of [n] := {1, 2, …, n}
and weights wi(S) for each set S ∈ Fi.

Output
A DAG ([n], A), with Ai ∈ Fi, maximizing

w(A) := w1(A1) + w2(A2) + … + wn(An) .

Here Ai is the set of parents of node i in A.

The BNSL problem

Similar to TSP and the Feedback Arc Set problem

NP-hard Chickering 1996

Can be solved in time O(2n n2) Ott & Miyano 2003, Koivisto & Sood 2004, Singh & Moore 2005, Silander & Myllymäki 2006

1

2

3

S w1(S)

{ } 3.0

{2} 3.5

{3} 2.0

{2, 3} 4.0

S w3(S)

{ } 2.0

{1} 1.5

{2} 2.5

{1, 2} 3.0

S w2(S)

{ } 1.5

{1} 3.0

{3} 2.0

{1, 3} 5.0

Input
Families F1, F2, …, Fn of subsets of [n] := {1, 2, …, n}
and weights wi(S) for each set S ∈ Fi.

Output
A DAG ([n], A), with Ai ∈ Fi, maximizing

w(A) := w1(A1) + w2(A2) + … + wn(An) .

Here Ai is the set of parents of node i in A.

Our results

Theorem 1
BNSL, with subexponentially many potential parent sets, cannot be
solved classically in time O(cn) for any c < 2 under SETH.

Our results

Theorem 1
BNSL, with subexponentially many potential parent sets, cannot be
solved classically in time O(cn) for any c < 2 under SETH.

Theorem 2
BNSL, with subexponentially many potential parent sets, admits a
bounded-error quantum algorithm that runs in time O(1.817n).

Our results

Theorem 1
BNSL, with subexponentially many potential parent sets, cannot be
solved classically in time O(cn) for any c < 2 under SETH.

Theorem 2
BNSL, with subexponentially many potential parent sets, admits a
bounded-error quantum algorithm that runs in time O(1.817n).

Theorem 3
BNSL, with O(1.453n) potential parent sets, admits a bounded-error
quantum algorithm that runs in time O(1.982n).

Hardness – proof idea

Reduce from the k-Hitting Set problem:

Input: A family T of subsets of [n], each of size at most k, and a number t.
Question: Is there a subset of [n] of size t intersecting all members of T?

Hardness – proof idea

Reduce from the k-Hitting Set problem:

Input: A family T of subsets of [n], each of size at most k, and a number t.
Question: Is there a subset of [n] of size t intersecting all members of T?

Theorem Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, Wahlström 2016

Under SETH, for any c < 2 there exists a k such that the k-Hitting Set
problem cannot be solved in time O(cn) by a classical algorithm.

Hardness – proof idea

Reduce from the k-Hitting Set problem:

Input: A family T of subsets of [n], each of size at most k, and a number t.
Question: Is there a subset of [n] of size t intersecting all members of T?

Theorem Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, Wahlström 2016

Under SETH, for any c < 2 there exists a k such that the k-Hitting Set
problem cannot be solved in time O(cn) by a classical algorithm.

Reduction

1. A simple reduction to a BNSL instance with n + |T| nodes.

Hardness – proof idea

Reduce from the k-Hitting Set problem:

Input: A family T of subsets of [n], each of size at most k, and a number t.
Question: Is there a subset of [n] of size t intersecting all members of T?

Theorem [Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, Wahlström 2016]

Under SETH, for any c < 2 there exists a k such that the k-Hitting Set
problem cannot be solved in time O(cn) by a classical algorithm.

Reduction

1. A simple reduction to a BNSL instance with n + |T| nodes.

Hardness – proof idea

Reduce from the k-Hitting Set problem:

Input: A family T of subsets of [n], each of size at most k, and a number t.
Question: Is there a subset of [n] of size t intersecting all members of T?

Theorem [Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, Wahlström 2016]

Under SETH, for any c < 2 there exists a k such that the k-Hitting Set
problem cannot be solved in time O(cn) by a classical algorithm.

Reduction

1. A simple reduction to a BNSL instance with n + |T| nodes.

2. Sparsify the instance, yielding just n’ := n + O(nk/(k+1)) = n + o(n) nodes.

Hardness – proof idea

Reduce from the k-Hitting Set problem:

Input: A family T of subsets of [n], each of size at most k, and a number t.
Question: Is there a subset of [n] of size t intersecting all members of T?

Theorem [Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, Wahlström 2016]

Under SETH, for any c < 2 there exists a k such that the k-Hitting Set
problem cannot be solved in time O(cn) by a classical algorithm.

Reduction

1. A simple reduction to a BNSL instance with n + |T| nodes.

2. Sparsify the instance, yielding just n’ := n + O(nk/(k+1)) = n + o(n) nodes.

3. If the BNSL instance could be solved in time O(bn’) with b < 2, then the
k-Hitting Set problem could be solved in time O(cn) with c = (2b)1/2 < 2.

Quantum algorithms

Quantum computation refers to a theoretical model inspired by quantum physics.

Enables solving some problems faster than by classical computation:
● Shor’s algorithm for the Factoring problem
● Grover’s algorithm for unstructured search

No practical value in the foreseeable future:
● The largest integer factored using Shor’s algorithm: 21 = 3 x 7

Martín-López, Laing, Lawson, Alvarez, Zhou, O'Brien 2012

IQM sells quantum
computer to the
US Department of
Energy's Oak
Ridge National
Laboratory
20.8.2025 / 1 MINUTES READ

CONTACT

Home > news > IQM sells quantum co…

The US Department of Energy's Oak Ridge National Laboratory (ORNL)
has acquired IQM's 20-qubit quantum computer , IQM Radiance,

https://www.enterespoo.fi/
https://www.enterespoo.fi/contact-us
https://www.enterespoo.fi/
https://www.enterespoo.fi/category/news
https://meetiqm.com/press-releases/iqm-to-integrate-quantum-computer-into-oak-ridge-national-laboratorys-hpc-systems/
https://meetiqm.com/press-releases/iqm-to-integrate-quantum-computer-into-oak-ridge-national-laboratorys-hpc-systems/

Building blocks
Recursive quantum search Dürr & Høyer 1996; Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2019
Suppose f(x) is an integer computable for any given x {1, 2, . . . , m}∈ by a
bounded-error quantum algorithm in time T. Then there is a bounded-error
quantum algorithm that computes max f(x) in time O(T m1/2 log m).

Building blocks
Recursive quantum search Dürr & Høyer 1996; Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2019
Suppose f(x) is an integer computable for any given x {1, 2, . . . , m}∈ by a
bounded-error quantum algorithm in time T. Then there is a bounded-error
quantum algorithm that computes max f(x) in time O(T m1/2 log m).

Quantum RAM Giovannetti, Lloyd, Maccone 2008
Any time-T classical algorithm that uses random access memory can be invoked
as a subroutine for a quantum algorithm in time O(T).

Building blocks
Recursive quantum search Dürr & Høyer 1996; Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2019
Suppose f(x) is an integer computable for any given x {1, 2, . . . , m}∈ by a
bounded-error quantum algorithm in time T. Then there is a bounded-error
quantum algorithm that computes max f(x) in time O(T m1/2 log m).

Quantum RAM Giovannetti, Lloyd, Maccone 2008
Any time-T classical algorithm that uses random access memory can be invoked
as a subroutine for a quantum algorithm in time O(T).

Vertex ordering problems Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2019
There is a bounded-error quantum algorithm that computes

max { f(L1, 1) + f(L2, 2) + … + f(Ln, n) : L is a linear order on [n] }

in time O(1.817n T), supposing f can be evaluated in time T.

13 4 2

L4 L2

A speedup for BNSL – proof of Theorem 2
Idea: Formulate BNSL as a vertex ordering problem with an appropriate f.

A speedup for BNSL – proof of Theorem 2
Idea: Formulate BNSL as a vertex ordering problem with an appropriate f.

Observations

1. Every DAG has a topological ordering of the nodes – a linear order L.

A speedup for BNSL – proof of Theorem 2
Idea: Formulate BNSL as a vertex ordering problem with an appropriate f.

Observations

1. Every DAG has a topological ordering of the nodes – a linear order L.

2. Maximize the weight among DAGs A whose topological ordering is L:

for each node i: max { wi(Ai) : Ai is a subset of Li } =: f(Li, i) .

A speedup for BNSL – proof of Theorem 2
Idea: Formulate BNSL as a vertex ordering problem with an appropriate f.

Observations

1. Every DAG has a topological ordering of the nodes – a linear order L.

2. Maximize the weight among DAGs A whose topological ordering is L:

for each node i: max { wi(Ai) : Ai is a subset of Li } =: f(Li, i) .

3. Evaluating f takes time linear in the number of potential parents sets.

Or, about a square root of that using quantum computing.

=> a subexponential factor => time O(1.817n).

A speedup for BNSL – proof of Theorem 2
Idea: Formulate BNSL as a vertex ordering problem with an appropriate f.

Observations

1. Every DAG has a topological ordering of the nodes – a linear order L.

2. Maximize the weight among DAGs A whose topological ordering is L:

for each node i: max { wi(Ai) : Ai is a subset of Li } =: f(Li, i) .

3. Evaluating f takes time linear in the number of potential parents sets.

Or, about a square root of that using quantum computing.

=> a subexponential factor => time O(1.817n).

What if we have exponentially many potential parent sets?

Another speedup – proof of Theorem 3
Idea: Connect with a known space–time tradeoff for vertex ordering problems.

Another speedup – proof of Theorem 3
Idea: Connect with a known space–time tradeoff for vertex ordering problems.

Partial order cover Koivisto & Parviainen 2010
A family P of partial orders on [n] is a cover if every linear order L on [n] is a
linear extension of some member P of P, i.e., P ⊆ L.

Another speedup – proof of Theorem 3
Idea: Connect with a known space–time tradeoff for vertex ordering problems.

Write max { f(L) : L is a linear order on [n] } as

max { g(P) : P ∈ P } , with g(P) := max { f(L) : L is a linear extension of P } .

Partial order cover Koivisto & Parviainen 2010
A family P of partial orders on [n] is a cover if every linear order L on [n] is a
linear extension of some member P of P, i.e., P ⊆ L.

Another speedup – proof of Theorem 3
Idea: Connect with a known space–time tradeoff for vertex ordering problems.

Write max { f(L) : L is a linear order on [n] } as

max { g(P) : P ∈ P } , with g(P) := max { f(L) : L is a linear extension of P } .

Partial order cover Koivisto & Parviainen 2010
A family P of partial orders on [n] is a cover if every linear order L on [n] is a
linear extension of some member P of P, i.e., P ⊆ L.

Space x time Koivisto & Parviainen 2010
Any vertex ordering problem can be solved in space O*(S) and time O*(T) with

S := max { |Downsets(P)| : P ∈ P } and T := ∑ { |Downsets(P)| : P ∈ P } .

There exists a cover such that S T = S2 |P| = O(3.93n) and S = O(1.453n).

Another speedup – proof of Theorem 3
Idea: Connect with a known space–time tradeoff for vertex ordering problems.

Write max { f(L) : L is a linear order on [n] } as

max { g(P) : P ∈ P } , with g(P) := max { f(L) : L is a linear extension of P } .

=> ?

Partial order cover K. & Parviainen 2009
A family P of partial orders on [n] is a cover if every linear order L on [n] is a
linear extension of some member P of P, i.e., P ⊆ L.

Space x time Koivisto & Parviainen 2010
Any vertex ordering problem can be solved in space O*(S) and time O*(T) with

S := max { |Downsets(P)| : P ∈ P } and T := ∑ { |Downsets(P)| : P ∈ P } .

There exists a cover such that S T = S2 |P| = O(3.93n) and S = O(1.453n).

Another speedup – proof of Theorem 3
Idea: Connect with a known space–time tradeoff for vertex ordering problems.

Write max { f(L) : L is a linear order on [n] } as

max { g(P) : P ∈ P } , with g(P) := max { f(L) : L is a linear extension of P } .

=> BNSL using quantum search in time

O(S |P|1/2 log |P|) = O(1.982n) ,

supposing the number of potential parent sets is O(S).

Partial order cover K. & Parviainen 2009
A family P of partial orders on [n] is a cover if every linear order L on [n] is a
linear extension of some member P of P, i.e., P ⊆ L.

Space x time Koivisto & Parviainen 2010
Any vertex ordering problem can be solved in space O*(S) and time O*(T) with

S := max { |Downsets(P)| : P ∈ P } and T := ∑ { |Downsets(P)| : P ∈ P } .

There exists a cover such that S T = S2 |P| = O(3.93n) and S = O(1.453n).

Summary

Theorem 1
BNSL, with subexponentially many potential parent sets, cannot be
solved classically in time O(cn) for any c < 2 under SETH.

Theorem 2
BNSL, with subexponentially many potential parent sets, admits a
bounded-error quantum algorithm that runs in time O(1.817n).

Theorem 3
BNSL, with O(1.453n) potential parent sets, admits a bounded-error
quantum algorithm that runs in time O(1.982n).

Summary

Theorem 1
BNSL, with subexponentially many potential parent sets, cannot be
solved classically in time O(cn) for any c < 2 under SETH.

Theorem 2
BNSL, with subexponentially many potential parent sets, admits a
bounded-error quantum algorithm that runs in time O(1.817n).

Theorem 3
BNSL, with O(1.453n) potential parent sets, admits a bounded-error
quantum algorithm that runs in time O(1.982n).

Open problem
Can BNSL, with polynomially many potential parent sets, be solved classically in
time O(cn) for some c < 2?

Summary

Theorem 1
BNSL, with subexponentially many potential parent sets, cannot be
solved classically in time O(cn) for any c < 2 under SETH.

Theorem 2
BNSL, with subexponentially many potential parent sets, admits a
bounded-error quantum algorithm that runs in time O(1.817n).

Theorem 3
BNSL, with O(1.453n) potential parent sets, admits a bounded-error
quantum algorithm that runs in time O(1.982n).

Open problem
Does BNSL, with O(2n) potential parent sets, admit a bounded-error quantum
algorithm that runs in time O(cn) for some c < 2?

Open problem
Can BNSL, with polynomially many potential parent sets, be solved classically in
time O(cn) for some c < 2?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

