Multiparty Communication Models and Applications

Speaker: Xianbin Zhu (supervised by Jara Uitto)

Outline

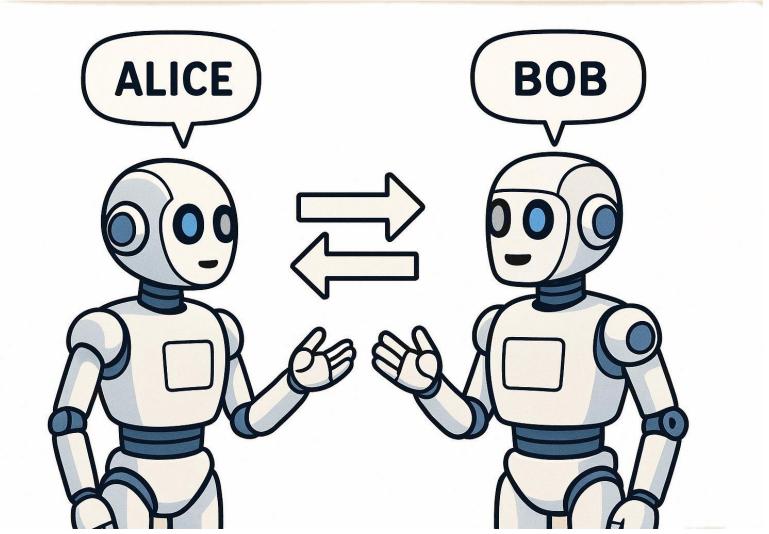
• 1. Motivation

• 2. Models

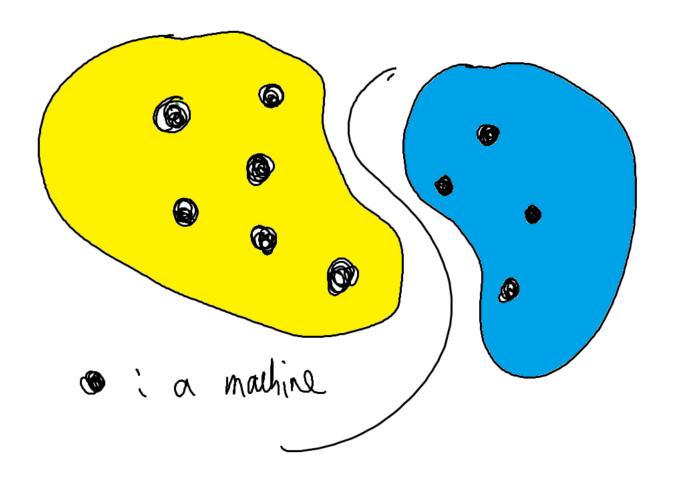
• 3. Applications: distributed computing, streaming algorithms, crypotography

Motivation

Two-party communication model

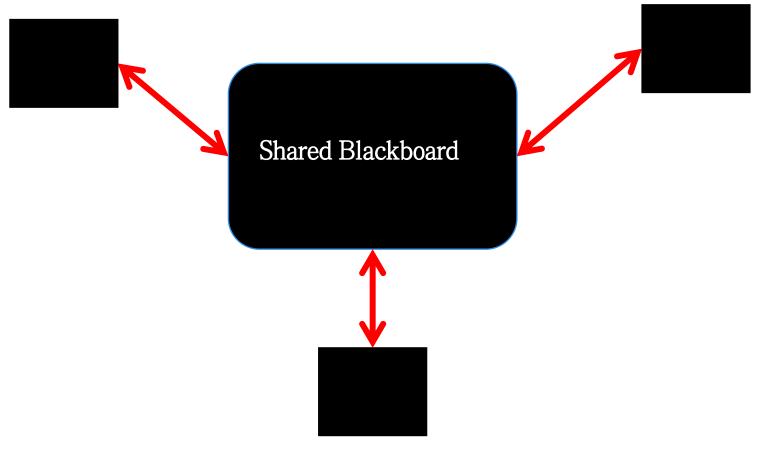


Two-party communication model in Distributed Computing



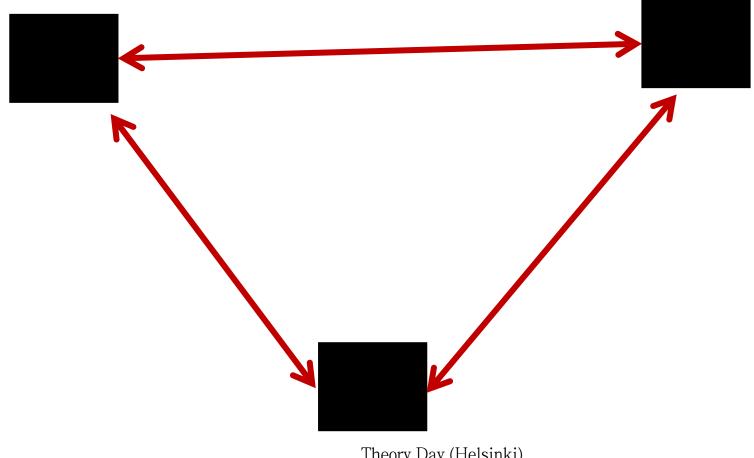
Multiparty Communication Models

Multiparty Communication Models



29 August 2025 Theory Day (Helsinki) 7

message passing model (without shared blackboard)

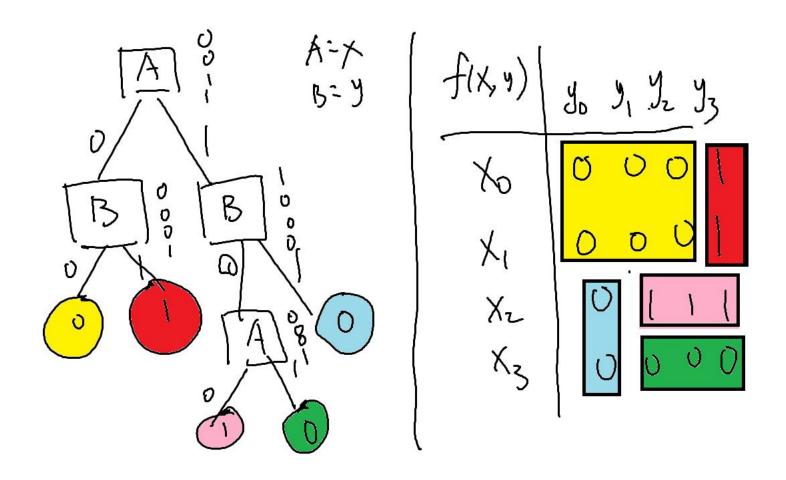


29 August 2025 Theory Day (Helsinki)

Tools for multiparty communication models

- n-dimensional box
- Information theory
 - 1. Entropy
 - 2. Mutual Information
- Round Elimination
- (open) New Tools

Combinatorial Rectangle



n-dimensional Box

Information Theory (Some)

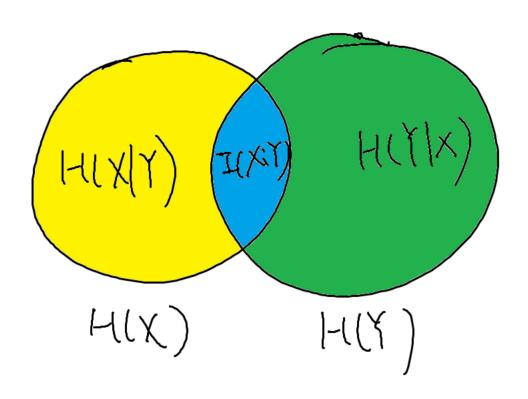
$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

For two random variables X and Y:

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log rac{p(x,y)}{p(x)p(y)}$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

The Relationship bewteen Entropy and Mutal Information



Why Information Theory Works

• $CC(f) \ge |\pi| \ge H(\pi) \ge I(\pi:XY) = IC(f)$

- Under some distributions, mutual information has nice properties, e.g., Decomposition Lemma
- Information Complexity has a nice direct sum property

Applications

1. Lower Bounds in Distributed Computing

Distributed Sketching Model

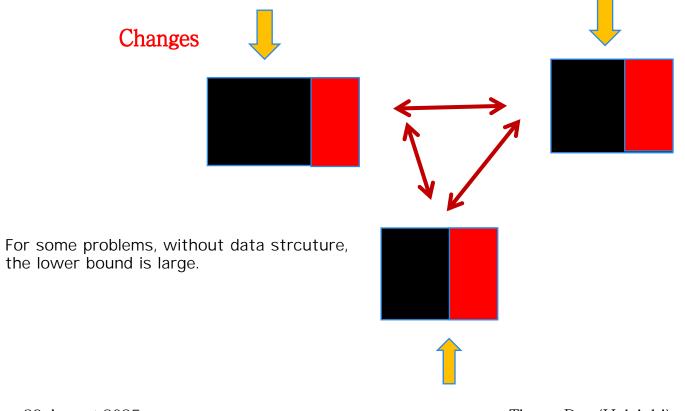
- I. A referee and n nodes.
- II. Each node knows its neighbors.
- III. Initially, the referee has **nothing**. After receiving messages from nodes, this referee outputs the result (one-round).

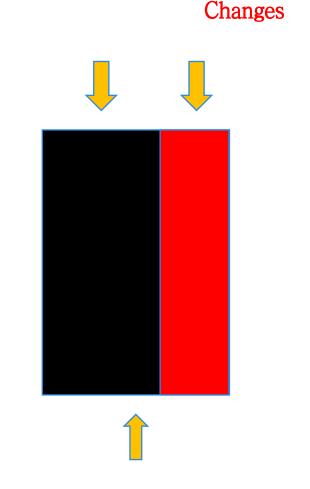
Result: Any public-coin distributed sketcihng protocol for MM(MIS) with constant successful probability requires $\Omega(n^{1/2-\varepsilon})$ sketch(a message sent by each node). [PODC2020]

16

Open: Dynamic Distributed Algorithms

• Distributed Data Structure





29 August 2025

Theory Day (Helsinki)

Open: Dynamic Distributed Algorithms

1. Lower Bounds?

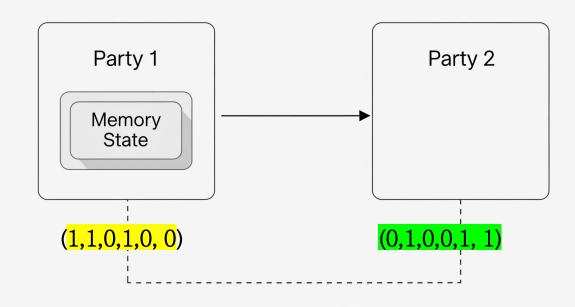
2. How can distributed memory help reduce round complexity?

2. Lower Bounds in Streaming Models

- Lower bounds of space complexity in the streaming model are reduced to multiparty communication problems:
 - 1. Element Frenquency F_k.
 - 2. Matching
 - 3. Others.

The space complexity of approximating F*_inf

Sends Memory State



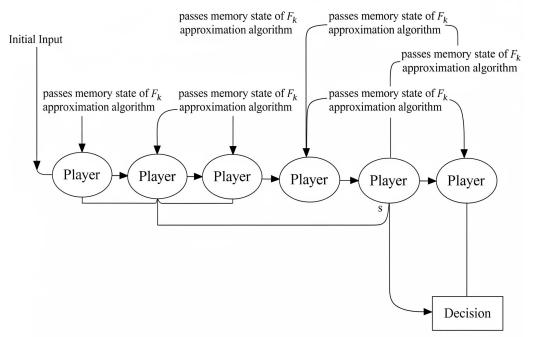
DISJ if the approximate result is less than e.g., 4/3.

Disjointness Protocol

<u>Low-Space Streaming Algorithms => Low Communication One-Way Protocols</u>

The space complexity of approximating F_k

Sequetial chain of s' players



$$F_k = \sum_{i=1}^n m_i^k$$

 m_i : The frequency of the i-th unique value

<u>Low-Space Streaming Algorithms => Low Communication Multiparty</u>

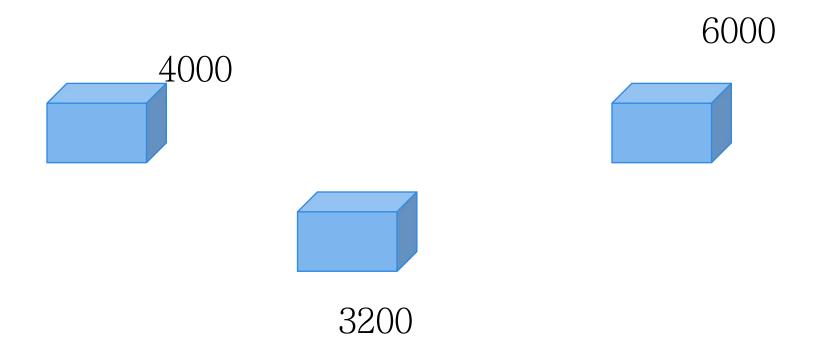
<u>Communication Protocols</u>

3. Crypotography

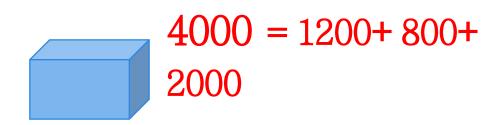
Secure Multiparty Computation (SMPC)

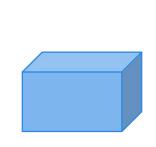
Given k players, p1, p2, ..., pk, each has private data x1, x2, ..., xk. Participants want to compute F(d1, d2, ..., dN) while keeping their own inputs secret.

Example: Average Salary



Example: Average Salary

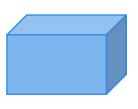




$$6000 = 1000 + 2000 + 3000$$

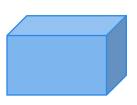
$$3200 = 1200 + 1500 + 500$$

Example: Average Salary



1000

2000 500 = 3500



Benifits of SMPC

• Without the Third Party

Data Privacy

• Quantum Safe!

Thanks!