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The result
Theorem

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability in
time O(log6 n).
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The result
Theorem

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability in
time O(log6 n).

Corollary:
For any local potential problem Π, there exists a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).

derandomization [Ghaffari, Harris, and Kuhn, FOCS ’18]
+

network decomposition [Ghaffari and Grunau, FOCS ’24]
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Locally Optimal Cut (LOC)
Input:

Output:

- graph G = (V , E)- two colors red and green
- a (not necessarily proper) 2-coloring c∶V → {red,green} of G- for each v ∈ V , at least ≥ deg(v)/2 neighbors of different color (w.r.t. v)

valid solution

invalid solution
fixing procedure

flip color of invalid node

Question: can we always solve the problem?

locally checkable

2-apx of MAX-CUT (locally optimal)
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LOC: fixing procedure

- # of monochromatic edges decreases

Fixing procedure: pick an arbitrary invalid node and flip its color

• Possibly, very long chains...

• Convergence? Potential function!

valid solution

- O(∣E∣)-time sequential algorithm
•With distributed algorithms?
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The LOCAL model
[Linial FOCS ’87 & SICOMP ’92]
•Distributed network of n processors/nodes
- graph G = (V , E) with ∣V ∣= n
- E: communication links- each node in V runs the same algorithm
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[Linial FOCS ’87 & SICOMP ’92]
•Distributed network of n processors/nodes
- graph G = (V , E) with ∣V ∣= n
- E: communication links

• Time is synchronous: nodes alternate
- arbitrary local computation & update of state variables- sending of messages to all neighbors
* no bandwidth constraints

- each node in V runs the same algorithm

• Complexity measure: number of communication rounds

•Unique identifiers to nodes in the set 1, . . . ,poly(n)* adversarially chosen- needed to solve even basic problems (2-coloring a 2-path)* n is known to the nodes

• Possible randomness: i.i.d. infinite random bit strings to nodes
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Local view

knowledge after T rounds of communication

Complexity measure: number of communication rounds

• Locality T = diam(G)+1 is always sufficient to solve any problem: gathering algorithm
• LOCAL algorithm A with locality TA + LOCAL algorithm B with locality TB = LOCAL algorithm C with locality TA+TB

•What do we know after T rounds?

T = 3
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Previous results about LOC
Lower bound:

• reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO ’19]
• fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC ’25]

-Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)
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Previous results about LOC
Lower bound:

• reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO ’19]
• fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC ’25]

Upper bound: - O(n)-rounds in both deterministic and randomized LOCAL (even in bounded-degree graphs)

HUGE GAP!

Let’s find a better distributed algorithm...(for bounded-degree graphs)

-Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)
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(α, d)-decomposition of a graph G = (V , E):

- partition of V into clusters (sets) C1, . . . ,Ck

- diam(Ci)≤ d for all i

- # inter-clusters edges ≤ α∣E∣

G
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MPX subroutine
(α, d)-decomposition of a graph G = (V , E):

- partition of V into clusters (sets) C1, . . . ,Ck

- diam(Ci)≤ d for all i

- # inter-clusters edges ≤ α∣E∣

Theorem (adaptation of [Miller, Peng, and Xu, SPAA ’13]):
There exists a randomized LOCAL algorithm MPX that computes an (α, d)-decomposition of a graph G = (V , E)
with the following properties:

- Running time O(log n/α).

-UB on the diameter is d = O(log n/α).
- For each v ∈ V , with probability ≥ 1/2 it holds that NΘ(1/α)[v]⊆ Ci for some i.

GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣
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A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣

• Brute-force solution with minimum potential in each cluster (time O(d))

• Simulate “fixing procedure” (at most O(α∣E∣) rounds)

- distance from global minimum of the potential is O(α∣E∣)

Overall running time: cost(MPX )+O(d)+O(α∣E∣) = O(log n/α+α∣E∣)

- bounded-degree graphs: running time O(
√

n log n) (minimized by α=

√
log n/n)
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A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣

• Brute-force solution with minimum potential in each cluster (time O(d))

• Simulate “fixing procedure” (at most O(α∣E∣) rounds)

- distance from global minimum of the potential is O(α∣E∣)

Overall running time: cost(MPX )+O(d)+O(α∣E∣) = O(log n/α+α∣E∣)

- bounded-degree graphs: running time O(
√

n log n) (minimized by α=

√
log n/n)

- still far from the lower bounds ... How to do better?
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Repeating “brute-force” does not work
G

- RunMPX to get (α, d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:
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• Repeat:
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Repeating “brute-force” does not work
G

- RunMPX to get (α, d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:

C1

C2

C3

C4

C5

C1

C2

C3
≤ d

≤ α∣E∣

•Distance from global minimum of the potential keeps at O(α∣E∣)

-what to do?
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Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A

Imp(A)= 3−1 = 2

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2
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- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3
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Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

C

Imp(C)= 2

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3 IR(C)= 1/2
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Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

C

Imp(C)= 2

Minimal improving set: improving set A such that

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3 IR(C)= 1/2

- There is no subset A′
⊆ A with IR(A′)> IR(A) “quality”: is there “useless stuff”?
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Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

C

Imp(C)= 2

Minimal improving set: improving set A such that

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3 IR(C)= 1/2

- There is no subset A′
⊆ A with IR(A′)> IR(A)

C not minimal

C′

Imp(C′)= 2

IR(C′)= 2/3

“quality”: is there “useless stuff”?
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Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

C

Imp(C)= 2

Minimal improving set: improving set A such that

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3 IR(C)= 1/2

- There is no subset A′
⊆ A with IR(A′)> IR(A)

C not minimal

C′

Imp(C′)= 2

IR(C′)= 2/3

“quality”: is there “useless stuff”?
An error is always a minimal improving set
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Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

G
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⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
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Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1
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⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x
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Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(log2 n/ε2) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1
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A2

A3

A5

A4
A6- diam(A i)= O(log n/ε)
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G• Start with a random coloring assignment

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )
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• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster
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• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do
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- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

PH
ASE

B1

C1 C2B2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order
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- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)
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The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

Proof 1: O(log n) phases. Each phase costs O(d). By MPX , d = O(log n/α). By def. α= O(1/ log4 n).
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- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

Claim 2: After phase i, any min. imp. set with IR≥ λi of diameter O(log n/ε) lies “very close” to all previous border nodes

B1
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- Run MPX to get an (α, d)-decomposition
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• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
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- Flip all sets in σ, in order
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- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)
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Claim 2: After phase i, any min. imp. set with IR≥ λi of diameter O(log n/ε) lies “very close” to all previous border nodes

Property 1 + Property 2
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C1 C2B2

Property 1 + Property 2
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The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)
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ASE

Claim 2: After phase i, any min. imp. set with IR≥ λi of diameter O(log n/ε) lies “very close” to all previous border nodes

Property 1 + Property 2

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases
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Property 1 + Property 2
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The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

Claim 2: After phase i, any min. imp. set with IR≥ λi of diameter O(log n/ε) lies “very close” to all previous border nodes

Property 1 + Property 2

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

B1

C1 C2B2

MPX guarantees + Claim 2

Property 1 + Property 2
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Recap & conclusions
Theorem:

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability
in time O(log6 n). The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).
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Proof of Property 1
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′
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Proof of Property 2
Property 2: on sequences of x-improving sets
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v
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- Similar to Lemma 1, but now to go back to G we need to multiply by O(d) (diameter of the A is)
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Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)
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