
Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Distributed Algorithms for Local Potential Problems

Francesco d’Amore

Joint work with A. Balliu, T. Boudier, D. Olivetti, G. Schmid, and J. Suomela
Helsinki Algorithms & Theory Days29 August 2025



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The result
Theorem

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability in
time O(log6 n).



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The result
Theorem

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability in
time O(log6 n).

Corollary:
For any local potential problem Π, there exists a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).

derandomization [Ghaffari, Harris, and Kuhn, FOCS ’18]
+

network decomposition [Ghaffari and Grunau, FOCS ’24]



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Locally Optimal Cut (LOC)
Input: - graph G = (V , E)- two colors red and green



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Locally Optimal Cut (LOC)
Input:

Output:

- graph G = (V , E)- two colors red and green
- a (not necessarily proper) 2-coloring c∶V → {red,green} of G- for each v ∈ V , at least ≥ deg(v)/2 neighbors of different color (w.r.t. v)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Locally Optimal Cut (LOC)
Input:

Output:

- graph G = (V , E)- two colors red and green
- a (not necessarily proper) 2-coloring c∶V → {red,green} of G- for each v ∈ V , at least ≥ deg(v)/2 neighbors of different color (w.r.t. v)

valid solution

locally checkable



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Locally Optimal Cut (LOC)
Input:

Output:

- graph G = (V , E)- two colors red and green
- a (not necessarily proper) 2-coloring c∶V → {red,green} of G- for each v ∈ V , at least ≥ deg(v)/2 neighbors of different color (w.r.t. v)

valid solution

locally checkable

2-apx of MAX-CUT (locally optimal)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Locally Optimal Cut (LOC)
Input:

Output:

- graph G = (V , E)- two colors red and green
- a (not necessarily proper) 2-coloring c∶V → {red,green} of G- for each v ∈ V , at least ≥ deg(v)/2 neighbors of different color (w.r.t. v)

valid solution

invalid solution

locally checkable

2-apx of MAX-CUT (locally optimal)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Locally Optimal Cut (LOC)
Input:

Output:

- graph G = (V , E)- two colors red and green
- a (not necessarily proper) 2-coloring c∶V → {red,green} of G- for each v ∈ V , at least ≥ deg(v)/2 neighbors of different color (w.r.t. v)

valid solution

invalid solution
fixing procedure

flip color of invalid node

locally checkable

2-apx of MAX-CUT (locally optimal)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Locally Optimal Cut (LOC)
Input:

Output:

- graph G = (V , E)- two colors red and green
- a (not necessarily proper) 2-coloring c∶V → {red,green} of G- for each v ∈ V , at least ≥ deg(v)/2 neighbors of different color (w.r.t. v)

valid solution

invalid solution
fixing procedure

flip color of invalid node

Question: can we always solve the problem?

locally checkable

2-apx of MAX-CUT (locally optimal)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

• Convergence?

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure
Fixing procedure: pick an arbitrary invalid node and flip its color

• Convergence? Potential function!

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure

- # of monochromatic edges decreases

Fixing procedure: pick an arbitrary invalid node and flip its color

• Convergence? Potential function!

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure

- # of monochromatic edges decreases

Fixing procedure: pick an arbitrary invalid node and flip its color

• Convergence? Potential function!

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure

- # of monochromatic edges decreases

Fixing procedure: pick an arbitrary invalid node and flip its color

• Possibly, very long chains...

• Convergence? Potential function!

valid solution



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure

- # of monochromatic edges decreases

Fixing procedure: pick an arbitrary invalid node and flip its color

• Possibly, very long chains...

• Convergence? Potential function!

valid solution

- O(∣E∣)-time sequential algorithm



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

LOC: fixing procedure

- # of monochromatic edges decreases

Fixing procedure: pick an arbitrary invalid node and flip its color

• Possibly, very long chains...

• Convergence? Potential function!

valid solution

- O(∣E∣)-time sequential algorithm
•With distributed algorithms?



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The LOCAL model
[Linial FOCS ’87 & SICOMP ’92]
•Distributed network of n processors/nodes
- graph G = (V , E) with ∣V ∣= n
- E: communication links- each node in V runs the same algorithm



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The LOCAL model
[Linial FOCS ’87 & SICOMP ’92]
•Distributed network of n processors/nodes
- graph G = (V , E) with ∣V ∣= n
- E: communication links

• Time is synchronous: nodes alternate
- arbitrary local computation & update of state variables- sending of messages to all neighbors
* no bandwidth constraints

- each node in V runs the same algorithm



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The LOCAL model
[Linial FOCS ’87 & SICOMP ’92]
•Distributed network of n processors/nodes
- graph G = (V , E) with ∣V ∣= n
- E: communication links

• Time is synchronous: nodes alternate
- arbitrary local computation & update of state variables- sending of messages to all neighbors
* no bandwidth constraints

- each node in V runs the same algorithm

•Unique identifiers to nodes in the set 1, . . . ,poly(n)* adversarially chosen- needed to solve even basic problems (2-coloring a 2-path)* n is known to the nodes



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The LOCAL model
[Linial FOCS ’87 & SICOMP ’92]
•Distributed network of n processors/nodes
- graph G = (V , E) with ∣V ∣= n
- E: communication links

• Time is synchronous: nodes alternate
- arbitrary local computation & update of state variables- sending of messages to all neighbors
* no bandwidth constraints

- each node in V runs the same algorithm

•Unique identifiers to nodes in the set 1, . . . ,poly(n)* adversarially chosen- needed to solve even basic problems (2-coloring a 2-path)* n is known to the nodes

• Possible randomness: i.i.d. infinite random bit strings to nodes



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The LOCAL model
[Linial FOCS ’87 & SICOMP ’92]
•Distributed network of n processors/nodes
- graph G = (V , E) with ∣V ∣= n
- E: communication links

• Time is synchronous: nodes alternate
- arbitrary local computation & update of state variables- sending of messages to all neighbors
* no bandwidth constraints

- each node in V runs the same algorithm

• Complexity measure: number of communication rounds

•Unique identifiers to nodes in the set 1, . . . ,poly(n)* adversarially chosen- needed to solve even basic problems (2-coloring a 2-path)* n is known to the nodes

• Possible randomness: i.i.d. infinite random bit strings to nodes



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local view
Complexity measure: number of communication rounds •What do we know after T rounds?



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local view

knowledge after T rounds of communication

Complexity measure: number of communication rounds •What do we know after T rounds?

T = 1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local view

knowledge after T rounds of communicationT = 2

Complexity measure: number of communication rounds •What do we know after T rounds?



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local view

knowledge after T rounds of communication

Complexity measure: number of communication rounds •What do we know after T rounds?

T = 3



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local view

knowledge after T rounds of communication

Complexity measure: number of communication rounds

• Locality T = diam(G)+1 is always sufficient to solve any problem: gathering algorithm

•What do we know after T rounds?

T = 3



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local view

knowledge after T rounds of communication

Complexity measure: number of communication rounds

• Locality T = diam(G)+1 is always sufficient to solve any problem: gathering algorithm
• LOCAL algorithm A with locality TA + LOCAL algorithm B with locality TB = LOCAL algorithm C with locality TA+TB

•What do we know after T rounds?

T = 3



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Previous results about LOC
Lower bound:

• reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO ’19]
• fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC ’25]

-Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Previous results about LOC
Lower bound:

• reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO ’19]
• fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC ’25]

Upper bound: - O(n)-rounds in both deterministic and randomized LOCAL (even in bounded-degree graphs)

-Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Previous results about LOC
Lower bound:

• reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO ’19]
• fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC ’25]

Upper bound: - O(n)-rounds in both deterministic and randomized LOCAL (even in bounded-degree graphs)

HUGE GAP!

Let’s find a better distributed algorithm...(for bounded-degree graphs)

-Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

MPX subroutine
(α, d)-decomposition of a graph G = (V , E):

- partition of V into clusters (sets) C1, . . . ,Ck

- diam(Ci)≤ d for all i

- # inter-clusters edges ≤ α∣E∣

G



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

MPX subroutine
(α, d)-decomposition of a graph G = (V , E):

- partition of V into clusters (sets) C1, . . . ,Ck

- diam(Ci)≤ d for all i

- # inter-clusters edges ≤ α∣E∣

GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

MPX subroutine
(α, d)-decomposition of a graph G = (V , E):

- partition of V into clusters (sets) C1, . . . ,Ck

- diam(Ci)≤ d for all i

- # inter-clusters edges ≤ α∣E∣

Theorem (adaptation of [Miller, Peng, and Xu, SPAA ’13]):
There exists a randomized LOCAL algorithm MPX that computes an (α, d)-decomposition of a graph G = (V , E)
with the following properties:

- Running time O(log n/α).

-UB on the diameter is d = O(log n/α).
- For each v ∈ V , with probability ≥ 1/2 it holds that NΘ(1/α)[v]⊆ Ci for some i.

GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣

• Brute-force solution with minimum potential in each cluster (time O(d))



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣

• Brute-force solution with minimum potential in each cluster (time O(d))

- distance from global minimum of the potential is O(α∣E∣)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣

• Brute-force solution with minimum potential in each cluster (time O(d))

• Simulate “fixing procedure” (at most O(α∣E∣) rounds)

- distance from global minimum of the potential is O(α∣E∣)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣

• Brute-force solution with minimum potential in each cluster (time O(d))

• Simulate “fixing procedure” (at most O(α∣E∣) rounds)

- distance from global minimum of the potential is O(α∣E∣)

Overall running time: cost(MPX )+O(d)+O(α∣E∣) = O(log n/α+α∣E∣)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣

• Brute-force solution with minimum potential in each cluster (time O(d))

• Simulate “fixing procedure” (at most O(α∣E∣) rounds)

- distance from global minimum of the potential is O(α∣E∣)

Overall running time: cost(MPX )+O(d)+O(α∣E∣) = O(log n/α+α∣E∣)

- bounded-degree graphs: running time O(
√

n log n) (minimized by α=

√
log n/n)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

A “simple” algorithm
GC1

C2

C3

C4

C5

≤ d

≤ α∣E∣

• Brute-force solution with minimum potential in each cluster (time O(d))

• Simulate “fixing procedure” (at most O(α∣E∣) rounds)

- distance from global minimum of the potential is O(α∣E∣)

Overall running time: cost(MPX )+O(d)+O(α∣E∣) = O(log n/α+α∣E∣)

- bounded-degree graphs: running time O(
√

n log n) (minimized by α=

√
log n/n)

- still far from the lower bounds ... How to do better?



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Repeating “brute-force” does not work
G

- RunMPX to get (α, d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Repeating “brute-force” does not work
G

- RunMPX to get (α, d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:

C1

C2

C3

C4

C5

≤ d

≤ α∣E∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Repeating “brute-force” does not work
G

- RunMPX to get (α, d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:

C1

C2

C3

C4

C5

C1

C2

C3
≤ d

≤ α∣E∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Repeating “brute-force” does not work
G

- RunMPX to get (α, d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:

C1

C2

C3

C4

C5

C1

C2

C3
≤ d

≤ α∣E∣

•Distance from global minimum of the potential keeps at O(α∣E∣)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Repeating “brute-force” does not work
G

- RunMPX to get (α, d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

• Repeat:

C1

C2

C3

C4

C5

C1

C2

C3
≤ d

≤ α∣E∣

•Distance from global minimum of the potential keeps at O(α∣E∣)

-what to do?



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential
- Improving ratio: IR(A)= Imp(A)/∣A∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A

Imp(A)= 3−1 = 2

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

C

Imp(C)= 2

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3 IR(C)= 1/2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

C

Imp(C)= 2

Minimal improving set: improving set A such that

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3 IR(C)= 1/2

- There is no subset A′
⊆ A with IR(A′)> IR(A) “quality”: is there “useless stuff”?



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

C

Imp(C)= 2

Minimal improving set: improving set A such that

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3 IR(C)= 1/2

- There is no subset A′
⊆ A with IR(A′)> IR(A)

C not minimal

C′

Imp(C′)= 2

IR(C′)= 2/3

“quality”: is there “useless stuff”?



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Improving set in a 2-colored graph G = (V , E)

- Subset A ⊆ V such that by flipping the colors of nodes in A the potential decreases
- Imp(A)= improvement in the potential

A B

Imp(A)= 3−1 = 2 Imp(B)= 4

C

Imp(C)= 2

Minimal improving set: improving set A such that

- Improving ratio: IR(A)= Imp(A)/∣A∣

IR(A)= 2/1 = 2 IR(B)= 4/3 IR(C)= 1/2

- There is no subset A′
⊆ A with IR(A′)> IR(A)

C not minimal

C′

Imp(C′)= 2

IR(C′)= 2/3

“quality”: is there “useless stuff”?
An error is always a minimal improving set



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

G



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA

v



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1

A2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1

A2

A3



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1

A2

A3
A4



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1

A2

A3

A5

A4
A6



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(log2 n/ε2) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1

A2

A3

A5

A4
A6- diam(A i)= O(log n/ε)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(log2 n/ε2) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1

A2

A3

A5

A4
A6- diam(A i)= O(log n/ε)

v



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(log2 n/ε2) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1

A2

A3

A5

A4
A6- diam(A i)= O(log n/ε)

v
Nr[v]



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Improving sets
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(log2 n/ε2) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

Sequence of x-improving sets:
- A1, . . . , Ak ⊆ V- A1 minimal improving set with IR(A1)≥ x- for all i > 1, A i minimal improving set with IR(A i)≥ x after having flipped A1, . . . , A i−1

GA1

A2

A3

A5

A4
A6- diam(A i)= O(log n/ε)

v

A′

Nr[v]



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do
C1

C2
B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

C1

C2
B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

σ1

σ2

C1

C2
B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

σ1

σ2

C1

C2
B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order
- λi+1 = λi +10ε

σ1

σ2

C1

C2
B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order
- λi+1 = λi +10ε

σ1

σ2

PH
ASE

C1

C2
B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order
- λi+1 = λi +10ε

PH
ASE

B1

C1 C2B2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order
- λi+1 = λi +10ε

PH
ASE

B1

C1 C2B2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

PH
ASE

B1

C1 C2B2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

B1

C1 C2B2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

Proof 1: O(log n) phases. Each phase costs O(d). By MPX , d = O(log n/α). By def. α= O(1/ log4 n).

B1

C1 C2B2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

Claim 2: After phase i, any min. imp. set with IR≥ λi of diameter O(log n/ε) lies “very close” to all previous border nodes

B1

C1 C2B2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

Claim 2: After phase i, any min. imp. set with IR≥ λi of diameter O(log n/ε) lies “very close” to all previous border nodes

Property 1 + Property 2

B1

C1 C2B2

Property 1 + Property 2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

Claim 2: After phase i, any min. imp. set with IR≥ λi of diameter O(log n/ε) lies “very close” to all previous border nodes

Property 1 + Property 2

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

B1

C1 C2B2

Property 1 + Property 2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

The algorithm
G• Start with a random coloring assignment

- Run MPX to get an (α, d)-decomposition

• Set λ1 = 1/4 (initial IR), ε= λ/(2000log n) (Properties 1,2), α=Θ(ε2/ log2 n) (MPX )

• For i = 1 to 100log n times, do

- Find maximal sequence σ of λi-improving sets of diam. O(log n/ε) inside G[C] that do not contain border nodes
- C = current cluster

- Flip all sets in σ, in order

• Return current coloring
- λi+1 = λi +10ε

Claim 1: The running time of the algorithm is O(d ⋅ log n)= O(log2 n/α)= O(log6 n)

PH
ASE

Claim 2: After phase i, any min. imp. set with IR≥ λi of diameter O(log n/ε) lies “very close” to all previous border nodes

Property 1 + Property 2

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

B1

C1 C2B2

MPX guarantees + Claim 2

Property 1 + Property 2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

valid neighborhoods

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

• Pot ∶ Gr,∆→ R≥0 assigns a potential to every labeled neighborhood
of radius r and max degree ∆

valid neighborhoods

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

• Pot ∶ Gr,∆→ R≥0 assigns a potential to every labeled neighborhood
of radius r and max degree ∆

Pot= 0 Pot= 0 Pot= 1 Pot= 1 Pot= 1 Pot= 1Pot= 0 Pot= 0

valid neighborhoods

Pot= 0 Pot= 0

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

• Pot ∶ Gr,∆→ R≥0 assigns a potential to every labeled neighborhood
of radius r and max degree ∆

Pot= 0 Pot= 0 Pot= 1 Pot= 1 Pot= 1 Pot= 1Pot= 0 Pot= 0

Pot= 3Pot= 2 Pot= 3Pot= 2Pot= 2Pot= 2

valid neighborhoods

Pot= 0 Pot= 0

Pot= 1 Pot= 1

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

• Pot ∶ Gr,∆→ R≥0 assigns a potential to every labeled neighborhood
of radius r and max degree ∆

Pot= 0 Pot= 0 Pot= 1 Pot= 1 Pot= 1 Pot= 1Pot= 0 Pot= 0

Pot= 3Pot= 2 Pot= 3Pot= 2Pot= 2Pot= 2

valid neighborhoods

• For every invalid neighborhood, there is a way to relabel the central
node to decrease the local (thus, global) potential

Pot= 0 Pot= 0

Pot= 1 Pot= 1

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

• Pot ∶ Gr,∆→ R≥0 assigns a potential to every labeled neighborhood
of radius r and max degree ∆

Pot= 0 Pot= 0 Pot= 1 Pot= 1 Pot= 1 Pot= 1Pot= 0 Pot= 0

Pot= 3Pot= 2 Pot= 3Pot= 2Pot= 2Pot= 2

valid neighborhoods

• For every invalid neighborhood, there is a way to relabel the central
node to decrease the local (thus, global) potential

Pot= 0 Pot= 0

Pot= 1 Pot= 1

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

• Pot ∶ Gr,∆→ R≥0 assigns a potential to every labeled neighborhood
of radius r and max degree ∆

Pot= 0 Pot= 0 Pot= 1 Pot= 1 Pot= 1 Pot= 1Pot= 0 Pot= 0

Pot= 3Pot= 2 Pot= 3Pot= 2Pot= 2Pot= 2

valid neighborhoods

• For every invalid neighborhood, there is a way to relabel the central
node to decrease the local (thus, global) potential

Pot= 0 Pot= 0

Pot= 1 Pot= 1

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

• Pot ∶ Gr,∆→ R≥0 assigns a potential to every labeled neighborhood
of radius r and max degree ∆

Pot= 0 Pot= 0 Pot= 1 Pot= 1 Pot= 1 Pot= 1Pot= 0 Pot= 0

Pot= 3Pot= 2 Pot= 3Pot= 2Pot= 2Pot= 2

valid neighborhoods

• For every invalid neighborhood, there is a way to relabel the central
node to decrease the local (thus, global) potential

Pot= 0 Pot= 0

Pot= 1 Pot= 1

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Local potential problems
• r > 0, ∆> 0

• C list of valid neighborhoods of radius r and max degree ∆

locally optimal cut with
∆= 3 (r = 1)

• Pot ∶ Gr,∆→ R≥0 assigns a potential to every labeled neighborhood
of radius r and max degree ∆

Pot= 0 Pot= 0 Pot= 1 Pot= 1 Pot= 1 Pot= 1Pot= 0 Pot= 0

Pot= 3Pot= 2 Pot= 3Pot= 2Pot= 2Pot= 2

valid neighborhoods

• For every invalid neighborhood, there is a way to relabel the central
node to decrease the local (thus, global) potential

Pot= 0 Pot= 0

Pot= 1 Pot= 1

invalid neighborhoods



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Recap & conclusions
Theorem:

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability
in time O(log6 n). The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Recap & conclusions
Theorem:

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability
in time O(log6 n). The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).

Lower bound: -Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Recap & conclusions
Theorem:

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability
in time O(log6 n). The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).

Lower bound: -Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Recap & conclusions
Theorem:

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability
in time O(log6 n). The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).

Lower bound: -Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap
- Right randomized complexity? Exponential gap



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Recap & conclusions
Theorem:

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability
in time O(log6 n). The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).

Lower bound: -Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap
- Right randomized complexity? Exponential gap
- Dependency in ∆? We actually give a O(poly(∆)poly(log n))-time randomized/deterministic algorithm



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Recap & conclusions
Theorem:

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability
in time O(log6 n). The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).

Lower bound: -Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap
- Right randomized complexity? Exponential gap
- Dependency in ∆? We actually give a O(poly(∆)poly(log n))-time randomized/deterministic algorithm

- some further assumption on the problem family: it includes locally optimal cut



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Recap & conclusions
Theorem:

For any local potential problem Π, there exists a randomized LOCAL algorithm that solves Π with high probability
in time O(log6 n). The latter can be derandomized into a deterministic LOCAL algorithm that solves Π in time
O(log8 n poly(log log n)).

Lower bound: -Ω(log n)-rounds in deterministic LOCAL (in bounded-degree trees)
-Ω(log log n)-rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap
- Right randomized complexity? Exponential gap
- Dependency in ∆? We actually give a O(poly(∆)poly(log n))-time randomized/deterministic algorithm

- some further assumption on the problem family: it includes locally optimal cut

THANKS



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 1
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 1
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Proof 1

- Si =Ni[v]∩ A



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 1
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Proof 1

- Si =Ni[v]∩ A

- ∃i = O(log n/ε) such that # edges in the cut (Si, A) is ≤ (ε/2)∣Si∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 1
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Proof 1

- Si =Ni[v]∩ A

- ∃i = O(log n/ε) such that # edges in the cut (Si, A) is ≤ (ε/2)∣Si∣

- if not, exponential growth of Si: ∣Si∣≥ (1+ε/(2∆))i
⟹ ∣S100∆ log n/ε∣≥ e50log n



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 1
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Proof 1

- Si =Ni[v]∩ A

- ∃i = O(log n/ε) such that # edges in the cut (Si, A) is ≤ (ε/2)∣Si∣

- if not, exponential growth of Si: ∣Si∣≥ (1+ε/(2∆))i
⟹ ∣S100∆ log n/ε∣≥ e50log n

- Imp(A)≤ Imp(Si)+ Imp(A \Si)+2size(Si, A)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 1
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Proof 1

- Si =Ni[v]∩ A

- ∃i = O(log n/ε) such that # edges in the cut (Si, A) is ≤ (ε/2)∣Si∣

- if not, exponential growth of Si: ∣Si∣≥ (1+ε/(2∆))i
⟹ ∣S100∆ log n/ε∣≥ e50log n

- Imp(A)≤ Imp(Si)+ Imp(A \Si)+2size(Si, A)

- Imp(Si)≥ IR(A)(∣A∣− ∣A \Si∣)−ε∣Si∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 1
Property 1: on minimal improving sets

- A ⊆ V minimal improving set- IR(A)≥ x

⟹ for all v ∈ A, ∃r = O(log n/ε) and minimal improving set A′
⊆Nr[v]∩ A such that IR(A′)≥ x−ε

- ε< x

GA Nr[v]
v

A′

Proof 1

- Si =Ni[v]∩ A

- ∃i = O(log n/ε) such that # edges in the cut (Si, A) is ≤ (ε/2)∣Si∣

- if not, exponential growth of Si: ∣Si∣≥ (1+ε/(2∆))i
⟹ ∣S100∆ log n/ε∣≥ e50log n

- Imp(A)≤ Imp(Si)+ Imp(A \Si)+2size(Si, A)

- Imp(Si)≥ IR(A)(∣A∣− ∣A \Si∣)−ε∣Si∣

- Imp(Si)≥ IR(∣Si∣)−ε∣Si∣= (x−ε)∣Si∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 2
Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(d log n/ε) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

GA1

A2

A3

A5

A4
A6- diam(A i)≤ d

v
Nr[v]

A′



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 2
Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(d log n/ε) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

GA1

A2

A3

A5

A4
A6- diam(A i)≤ d

v
Nr[v]

Proof 2

A′

- virtual graph H: nodes are A is, edges are between influencing A is



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 2
Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(d log n/ε) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

GA1

A2

A3

A5

A4
A6- diam(A i)≤ d

v
Nr[v]

Proof 2

A′

- virtual graph H: nodes are A is, edges are between influencing A is
-weights to nodes in V(H): for each A i, w(A i)= ∣A i∣



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 2
Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(d log n/ε) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

GA1

A2

A3

A5

A4
A6- diam(A i)≤ d

v
Nr[v]

Proof 2

A′

- virtual graph H: nodes are A is, edges are between influencing A is
-weights to nodes in V(H): for each A i, w(A i)= ∣A i∣

- Si =Ni[A i] (in H)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 2
Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(d log n/ε) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

GA1

A2

A3

A5

A4
A6- diam(A i)≤ d

v
Nr[v]

Proof 2

A′

- virtual graph H: nodes are A is, edges are between influencing A is
-weights to nodes in V(H): for each A i, w(A i)= ∣A i∣

- Si =Ni[A i] (in H)
- ∃i = O(log n/ε) such that ∑A j∈Si+1\Si

w(A j)≤ (ε/2)∑A j∈Si
w(A j)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 2
Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(d log n/ε) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

GA1

A2

A3

A5

A4
A6- diam(A i)≤ d

v
Nr[v]

Proof 2

A′

- virtual graph H: nodes are A is, edges are between influencing A is
-weights to nodes in V(H): for each A i, w(A i)= ∣A i∣

- Si =Ni[A i] (in H)
- ∃i = O(log n/ε) such that ∑A j∈Si+1\Si

w(A j)≤ (ε/2)∑A j∈Si
w(A j)

- if not, exponential growth of weights but total weight is O(n)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Property 2
Property 2: on sequences of x-improving sets

- A1, . . . , Ak ⊆ V sequence of x-improving sets

⟹ for all i, for all v ∈ A, ∃r = O(d log n/ε) and minimal improving set A′
⊆Nr[v]∩A such that IR(A′)≥ x−ε

- ε< x- A =∪iA i

GA1

A2

A3

A5

A4
A6- diam(A i)≤ d

v
Nr[v]

Proof 2

A′

- virtual graph H: nodes are A is, edges are between influencing A is
-weights to nodes in V(H): for each A i, w(A i)= ∣A i∣

- Si =Ni[A i] (in H)
- ∃i = O(log n/ε) such that ∑A j∈Si+1\Si

w(A j)≤ (ε/2)∑A j∈Si
w(A j)

- if not, exponential growth of weights but total weight is O(n)

- Similar to Lemma 1, but now to go back to G we need to multiply by O(d) (diameter of the A is)



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

GC1

C2

B1

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

NΘ(log n/ε)[B1]



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

GC1

C2

B1

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
NΘ(log n/ε)[B1]

A



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

GC1

C2

B1

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
NΘ(log n/ε)[B1]

A
- Maximality of the λ1-improving sequence! Contradiction



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

GC1

C2

B1

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
NΘ(log n/ε)[B1]- Maximality of the λ1-improving sequence! Contradiction

- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

B1
NΘ(log2 n/ε2)[B1]



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

NΘ(log n/ε)[B2]
C1

B1
NΘ(log2 n/ε2)[B1]

C2



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

NΘ(log n/ε)[B2]
C1

B1
NΘ(log2 n/ε2)[B1]

C2

- By contradiction, suppose min. imp. set A with IR ≥ λi is not contained



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

NΘ(log n/ε)[B2]
C1

B1
NΘ(log2 n/ε2)[B1]

C2

- By contradiction, suppose min. imp. set A with IR ≥ λi is not contained
A



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

NΘ(log n/ε)[B2]
C1

B1
NΘ(log2 n/ε2)[B1]

C2

- By contradiction, suppose min. imp. set A with IR ≥ λi is not contained
A

- A must be inside NΘ(log n/ε)[Bi] otherwise we break maximality



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

NΘ(log n/ε)[B2]
C1

B1
NΘ(log2 n/ε2)[B1]

C2

- By contradiction, suppose min. imp. set A with IR ≥ λi is not contained
A

- ∃ j ≤ i−1 such that A is not inside NΘ(log2 n/ε2)[B j] ⟹ A is fully within some cluster C at phase j

- A must be inside NΘ(log n/ε)[Bi] otherwise we break maximality



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

NΘ(log n/ε)[B2]
C1

B1
NΘ(log2 n/ε2)[B1]

C2

- By contradiction, suppose min. imp. set A with IR ≥ λi is not contained
A

- ∃ j ≤ i−1 such that A is not inside NΘ(log2 n/ε2)[B j] ⟹ A is fully within some cluster C at phase j

- A must be inside NΘ(log n/ε)[Bi] otherwise we break maximality

- consider all the min. imp. sets flipped after phase j: sequence of λ j+1-improving sets



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

NΘ(log n/ε)[B2]
C1

B1
NΘ(log2 n/ε2)[B1]

C2

- By contradiction, suppose min. imp. set A with IR ≥ λi is not contained
A

- ∃ j ≤ i−1 such that A is not inside NΘ(log2 n/ε2)[B j] ⟹ A is fully within some cluster C at phase j

- A must be inside NΘ(log n/ε)[Bi] otherwise we break maximality

- consider all the min. imp. sets flipped after phase j: sequence of λ j+1-improving sets
- Property 2: ∃ min. imp. set A′ inside NO(log2 n/ε2)[A] with IR(A′)≥ λ j+1−ε≥ λ j



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 2
Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

G

Proof 2: By induction on the phases.
- Base case phase i = 1, set NΘ(log n/ε)[B1]

- By contradiction, suppose min. imp. set A with IR ≥ λ1 is not contained
-Maximality of the λ1-improving sequence! Contradiction
- Suppose i > 1, set NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

NΘ(log n/ε)[B2]
C1

B1
NΘ(log2 n/ε2)[B1]

C2

- By contradiction, suppose min. imp. set A with IR ≥ λi is not contained
A

- ∃ j ≤ i−1 such that A is not inside NΘ(log2 n/ε2)[B j] ⟹ A is fully within some cluster C at phase j

- A must be inside NΘ(log n/ε)[Bi] otherwise we break maximality

- consider all the min. imp. sets flipped after phase j: sequence of λ j+1-improving sets
- Property 2: ∃ min. imp. set A′ inside NO(log2 n/ε2)[A] with IR(A′)≥ λ j+1−ε≥ λ j⟹ broken maximality in Phase j



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3
• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

GC1 C2B2

B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3
FromMPX : For each v ∈ V , with probability ≥ 1/2 there exists a cluster C such that NΘ(1/α)[v]⊆ C.

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

GC1 C2B2

B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3

Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

FromMPX : For each v ∈ V , with probability ≥ 1/2 there exists a cluster C such that NΘ(1/α)[v]⊆ C.

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

GC1 C2B2

B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3

Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

FromMPX : For each v ∈ V , with probability ≥ 1/2 there exists a cluster C such that NΘ(1/α)[v]⊆ C.

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

GC1 C2B2

B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3

Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

FromMPX : For each v ∈ V , with probability ≥ 1/2 there exists a cluster C such that NΘ(1/α)[v]⊆ C.

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

Proof 3: By contradiction, there is an error at the end of phase 100log n. Note that λ100log n ≤ 3/4.

GC1 C2B2

B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3

Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

FromMPX : For each v ∈ V , with probability ≥ 1/2 there exists a cluster C such that NΘ(1/α)[v]⊆ C.

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

Proof 3: By contradiction, there is an error at the end of phase 100log n. Note that λ100log n ≤ 3/4.

GC1 C2B2

- Node v colored with green with > deg(v)/2 neighbors of color green

B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3

Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

FromMPX : For each v ∈ V , with probability ≥ 1/2 there exists a cluster C such that NΘ(1/α)[v]⊆ C.

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

Proof 3: By contradiction, there is an error at the end of phase 100log n. Note that λ100log n ≤ 3/4.

GC1 C2B2

- Node v colored with green with > deg(v)/2 neighbors of color green
- {v} is an improving set, and IR({v})≥ 1

B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3

Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

FromMPX : For each v ∈ V , with probability ≥ 1/2 there exists a cluster C such that NΘ(1/α)[v]⊆ C.

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

Proof 3: By contradiction, there is an error at the end of phase 100log n. Note that λ100log n ≤ 3/4.

GC1 C2B2

- Node v colored with green with > deg(v)/2 neighbors of color green
- {v} is an improving set, and IR({v})≥ 1

- By MPX guarantees, ∃i ≤ 100log n such that NΘ(1/α)[v] is containedin some cluster in phase i w.p. 1−1/2100log n−1
≥ 1−1/n99

B1



Francesco d’Amore ⋅ Distributed Algorithms for Potential Problems ⋅ Helsinki Algorithms & Theory Days

Proof of Claim 3

Claim 2: After phase i, any MIS with IR≥ λi of diameter O(log n/ε) lies in NΘ(log n/ε)[Bi]∩ [∩ j≤i−1NΘ(log2 n/ε2)[B j]]

Claim 3: With probability ≥ 1−1/n10, there is no error after 100log n phases

FromMPX : For each v ∈ V , with probability ≥ 1/2 there exists a cluster C such that NΘ(1/α)[v]⊆ C.

• λ1 = 1/4, ε= λ/(2000log n), α=Θ(ε2/ log2 n)

Proof 3: By contradiction, there is an error at the end of phase 100log n. Note that λ100log n ≤ 3/4.

GC1 C2B2

- Node v colored with green with > deg(v)/2 neighbors of color green
- {v} is an improving set, and IR({v})≥ 1

- By MPX guarantees, ∃i ≤ 100log n such that NΘ(1/α)[v] is containedin some cluster in phase i w.p. 1−1/2100log n−1
≥ 1−1/n99

- α=Θ(ε2/ log2 n) is chosen large enough so that Claim 2 is contradicted B1


	Distributed Algorithms for Local Potential Problems
	The result
	Locally Optimal Cut (LOC)
	LOC: fixing procedure

	The LOCAL model
	Local view
	Previous results about LOC
	MPX subroutine
	A ``simple'' algorithm
	Repeating ``brute-force'' does not work
	Improving sets
	Improving sets
	The algorithm
	Local potential problems
	Recap \& conclusions
	Proof of Property 1
	Proof of Property 2
	Proof of Claim 2
	Proof of Claim 3

