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The result

Theorem

For any local potential problem I1, there exists a randomized LOCAL algorithm that solves IT1 with high probability in
time O(log®n).
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The result

Theorem

For any local potential problem I1, there exists a randomized LOCAL algorithm that solves IT1 with high probability in
time O(log®n).

derandomization |Ghaffari, Harris, and Kuhn, FOCS 18]
_I_

network decomposition [Ghaffari and Grunau, FOCS '24]

v
Corollary:

For any local potential problem TII, there exists a deterministic LOCAL algorithm that solves II in time
O(log® n poly(loglogn)).
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Locally Optimal Cut (LOC)

Input: -graph G =(V,E)
- two colors red and green
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Locally Optimal Cut (LOC)

Input: -graph G =(V,E)
- two colors red and green

Output: -3 (not necessarily proper) 2-coloring ¢: V — {red, green} of G
-for each v € V, at least = deg(v)/2 neighbors of different color (w.r.t. v)
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Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Locally Optimal Cut (LOC)

Input: -graph G =(V,E)
- two colors red and green

Output: -3 (not necessarily proper) 2-coloring ¢: V — {red, green} of G
-for each v € V, at least = deg(v)/2 neighbors of different color (w.r.t. v) ~ locally checkable

valid solution 2-apx of MAX-CUT (locally optimal)

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Locally Optimal Cut (LOC)

Input: -graph G =(V,E)
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Locally Optimal Cut (LOC)

Input: -graph G =(V,E)
- two colors red and green

Output: -3 (not necessarily proper) 2-coloring ¢: V — {red, green} of G
-for each v € V, at least = deg(v)/2 neighbors of different color (w.r.t. v) ~ locally checkable

valid solution 2-apx of MAX-CUT (locally optimal)

fixing procedure

invalid solution -
flip color of invalid node
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Locally Optimal Cut (LOC)

Input: -graph G =(V,E)
- two colors red and green

Output: -3 (not necessarily proper) 2-coloring ¢: V — {red, green} of G
-for each v € V, at least = deg(v)/2 neighbors of different color (w.r.t. v) ~ locally checkable

valid solution 2-apx of MAX-CUT (locally optimal)

fixing procedure

invalid solution -
flip color of invalid node

Question: can we always solve the problem?

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color
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LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color

- valid solution
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LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color

@ - @ valid solution

——————————————
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LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color

@ - @ valid solution

——————————————

e Convergence?

______________
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LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color

@ - @ valid solution

——————————————

e Convergence? Potential function!

______________

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color

@ - @ valid solution

——————————————

2O e ot menachiometic edges decreases

______________

e Convergence? Potential function!
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LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color
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LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color
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LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color

» O ® — o » ®
- valid solution
O »

e Convergence? Potential function!
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______________ o Poggibly, very Iong chains...

- O(|E|)-time sequential algorithm
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LOC: fixing procedure

Fixing procedure: pick an arbitrary invalid node and flip its color

» O ® — o » ®
- valid solution
O »

e Convergence? Potential function!

——————————————

2O e ot menachiometic edges decreases

______________ o Poggibly, very Iong chains...

- O(|E|)-time sequential algorithm

e With distributed algorithms?
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The LOCAL model

[Linial FOCS '87 & SICOMP '92] ®
e Distributed network of n processors/nodes '\'/’
-graph G = (V,E) with |V | =n

- E: communication links
- each node in V runs the same algorithm
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e Distributed network of n processors/nodes

-graph G = (V,E) with |V| =n
- E: communication links
- each node in V runs the same algorithm

« Time is synchronous: nodes alternate

- arbitrary local computation & update of state variables
- sending of messages to all neighbors

*no bandwidth constraints
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[Linial FOCS '87 & SICOMP '92]
e Distributed network of n processors/nodes

-graph G = (V,E) with |V| =n
- E: communication links
- each node in V runs the same algorithm

« Time is synchronous: nodes alternate

- arbitrary local computation & update of state variables
- sending of messages to all neighbors

*no bandwidth constraints

e Unique identifiers to nodes in the set 1,...,poly(n)

“adversarially chosen  *n is known to the nodes -
- needed to solve even basic problems (2-coloring a 2-path) @
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e Possible randomness: i.i.d. infinite random bit strings to nodes
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The LOCAL model

[Linial FOCS '87 & SICOMP '92]
e Distributed network of n processors/nodes

-graph G = (V,E) with |V| =n
- E: communication links
- each node in V runs the same algorithm

« Time is synchronous: nodes alternate

- arbitrary local computation & update of state variables
- sending of messages to all neighbors

*no bandwidth constraints

e Unique identifiers to nodes in the set 1,...,poly(n)

“adversarially chosen  *n is known to the nodes -
- needed to solve even basic problems (2-coloring a 2-path) @

e Possible randomness: i.i.d. infinite random bit strings to nodes

o Complexity measure: number of communication rounds
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| ocal view

Complexity measure: number of communication rounds e What do we know after T rounds?
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Complexity measure: number of communication rounds e What do we know after T rounds?

2 - knowledge after T rounds of communication
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| ocal view

Complexity measure: number of communication rounds e What do we know after T rounds?

< knowledge after T rounds of communication

e Locality T =diam(G) + 1 is always sufficient to solve any problem: gathering algorithm
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| ocal view

Complexity measure: number of communication rounds e What do we know after T rounds?

< knowledge after T rounds of communication

e Locality T =diam(G) + 1 is always sufficient to solve any problem: gathering algorithm

e | OCAL algorithm A with locality T4 + LOCAL algorithm B with locality Tg = LOCAL algorithm C with locality T'4 + T'g
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Previous results about LOC

Lower bound: - Q(logn)-rounds in deterministic LOCAL (in bounded-degree trees)
- Q(loglogn)-rounds in randomized LOCAL (in bounded-degree trees)

e reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO '19]

e fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC '25]
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Previous results about LOC

Lower bound: - Q(logn)-rounds in deterministic LOCAL (in bounded-degree trees)
- Q(loglogn)-rounds in randomized LOCAL (in bounded-degree trees)

e reduction from Sinkless Orientation [Balliu, Hirvonen, Lenzen, Olivetti, and Suomela, SIROCCO '19]

e fixed point in RE [Balliu, Brandt, Kuhn, Olivetti, and Saarhelo, DISC '25]

Upper bound: - O(n)-rounds in both deterministic and randomized LOCAL (even in bounded-degree graphs)

HUGE GAP!

Let’s find a better distributed algorithm...
(for bounded-degree graphs)
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MPX subroutine

(a,d)-decomposition of a graph G = (V,E):
- partition of V into clusters (sets) Cy,...,Cp
-diam(C;) = d for all i

- # inter-clusters edges < a|E|

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



MPX subroutine

(a,d)-decomposition of a graph G = (V,E):

- partition of V into clusters (sets) Cy,...,Cp

-diam(C;) = d for all i

- # inter-clusters edges < a|E|

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



MPX subroutine

(a,d)-decomposition of a graph G = (V,E):

- partition of V into clusters (sets) Cy,...,Cp

-diam(C;) = d for all i

- # inter-clusters edges < a|E|

Theorem (adaptation of [Miller, Peng, and Xu, SPAA '13]):

There exists a randomized LOCAL algorithm MP X that computes an (a,d)-decomposition of a graph G = (V ,E)
with the following properties:

- Running time O(logn/a).
- UB on the diameteris d = O(logn/a).
- For each v € V, with probability = 1/2 it holds that Ng(1/q)lv] € C; for some .
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A “simple” algorithm
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A “simple” algorithm

e Brute-force solution with minimum potential in each cluster (time O(d))
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e Brute-force solution with minimum potential in each cluster (time O(d))

- distance from global minimum of the potential is O(a|E|)
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A “simple” algorithm

e Brute-force solution with minimum potential in each cluster (time O(d))

- distance from global minimum of the potential is O(a|E|)

e Simulate “fixing procedure” (at most O(a|E|) rounds)
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A “simple” algorithm

e Brute-force solution with minimum potential in each cluster (time O(d))

- distance from global minimum of the potential is O(a|E|)

e Simulate “fixing procedure” (at most O(a|E|) rounds)

Overall running time: cost(MPX)+0(d) +O(al|E|) = O(logn/a+ al|E|)
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A “simple” algorithm

e Brute-force solution with minimum potential in each cluster (time O(d))

- distance from global minimum of the potential is O(a|E|)

e Simulate “fixing procedure” (at most O(a|E|) rounds)

Overall running time: cost(MPX)+0(d) +O(al|E|) = O(logn/a+ al|E|)

- bounded-degree graphs: running time O(y/nlogn) (minimized by a = y/logn /n)
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A “simple” algorithm

e Brute-force solution with minimum potential in each cluster (time O(d))

- distance from global minimum of the potential is O(a|E|)

e Simulate “fixing procedure” (at most O(a|E|) rounds)

Overall running time: cost(MPX)+0(d) +O(al|E|) = O(logn/a+ al|E|)

- bounded-degree graphs: running time O(y/nlogn) (minimized by a = y/logn /n)

- still far from the lower bounds ... How to do better?
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Repeating “brute-force” does not work

G

e Repeat:
- Run MPX to get (a,d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))
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Repeating “brute-force” does not work

e Repeat:
- Run MPX to get (a,d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))
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Repeating “brute-force” does not work

e Repeat:
- Run MPX to get (a,d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

e Distance from global minimum of the potential keeps at O(«a|E|)
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Repeating “brute-force” does not work

G

Cq ; Cs

e Repeat:
- Run MPX to get (a,d)-network decomposition (time O(d))

- Brute-force solution with minimum potential in each cluster (time O(d))

e Distance from global minimum of the potential keeps at O(«a|E|)

-what to do?

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Improving sets

Improving set in a 2-colored graph G = (V,E)

- Subset A €V such that by flipping the colors of nodes in A the potential decreases
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Improving sets

Improving set in a 2-colored graph G = (V,E)
- Subset A €V such that by flipping the colors of nodes in A the potential decreases

-Imp(A) = improvement in the potential
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Improving sets

Improving set in a 2-colored graph G = (V,E)
- Subset A €V such that by flipping the colors of nodes in A the potential decreases
-Imp(A) = improvement in the potential

- Improving ratio: IR(A) = Imp(A)/|A]|
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Improving sets

Improving set in a 2-colored graph G = (V,E)
- Subset A €V such that by flipping the colors of nodes in A the potential decreases
-Imp(A) = improvement in the potential

- Improving ratio: IR(A) = Imp(A)/|A]

Imp(A)=3-1=2
IR(A)=2/1=2
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Improving sets

Improving set in a 2-colored graph G = (V,E)
- Subset A €V such that by flipping the colors of nodes in A the potential decreases
-Imp(A) = improvement in the potential

- Improving ratio: IR(A) =Imp(A)/|A]

°, ® o o o,0 o o
@ @@ o - & ¢ -0 ¢
0 e O 0 0 0 e O
Imp(A)=3-1=2 Imp(B) =4
IR(A)=2/1=2 IR(B) =4/3
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Improving sets

Improving set in a 2-colored graph G = (V,E)
- Subset A €V such that by flipping the colors of nodes in A the potential decreases
-Imp(A) = improvement in the potential

- Improving ratio: IR(A) =Imp(A)/|A]

°, ® o ¢ 0,0 0 9 o 9 o o .0 o
@ @@ o - & ¢ -0 ¢ 6 ¢ ¢ o o -
¢ ¢ ¢ o 0 o o o ¢ ¢ o o o o
Imp(A)=3-1=2 Imp(B) =4 Imp(C) =2
IR(A)=2/1=2 IR(B) =4/3 IR(C)=1/2

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days




Improving sets

Improving set in a 2-colored graph G = (V,E)
- Subset A €V such that by flipping the colors of nodes in A the potential decreases
-Imp(A) = improvement in the potential

- Improving ratio: IR(A) =Imp(A)/|A]

°, ® o ¢ 0,0 0 9 o 9 o o .0 o
@ @@ o - & ¢ -0 ¢ 6 ¢ ¢ o o -
¢ ¢ ¢ o 0 o o o ¢ ¢ o o o o
Imp(A)=3-1=2 Imp(B) =4 Imp(C) =2
IR(A)=2/1=2 IR(B) =4/3 IR(C)=1/2

Minimal improving set: improving set A such that

-There is no subset A' € A with IR(A') > IR(A) —— “quality”: is there “useless stuff"?
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Improving sets

Improving set in a 2-colored graph G = (V,E)
- Subset A €V such that by flipping the colors of nodes in A the potential decreases
-Imp(A) = improvement in the potential

- Improving ratio: IR(A) =Imp(A)/|A]

C not minimal

°, ® % o o, 0 9
@ @@ *—9¢ &0 0 09

S © © © © o o o
Imp(A)=3-1=2 Imp(B) =4 Imp(C) =2 Imp(C') =2
IR(A)=2/1=2 IR(B) =4/3 IR(C)=1/2 IR(C')=2/3

Minimal improving set: improving set A such that

-There is no subset A' € A with IR(A') > IR(A) —— “quality”: is there “useless stuff"?
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Improving sets

Improving set in a 2-colored graph G = (V,E)
- Subset A €V such that by flipping the colors of nodes in A the potential decreases
-Imp(A) = improvement in the potential

- Improving ratio: IR(A) =Imp(A)/|A]

C not minimal

°, ® % o o, 0 9
@ @@ *—9¢ &0 0 09

S © © © © o o o
Imp(A)=3-1=2 Imp(B) =4 Imp(C) =2 Imp(C') =2
IR(A)=2/1=2 IR(B) =4/3 IR(C)=1/2 IR(C')=2/3

o o . . : : A i | TA | i :
Minimal improving set: improving set A such that n error is always a minimal improving set

-There is no subset A' € A with IR(A') > IR(A) —— “quality”: is there “useless stuff"?
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Improving sets

Property 1: on minimal improving sets

-A €V minimal improving set
-1R(A) = x
-E< X

— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
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Improving sets

Property 1: on minimal improving sets

-A €V minimal improving set
-1R(A) = x
-E< X

— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:

-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1
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Improving sets

Property 1: on minimal improving sets

-A €V minimal improving set
-1R(A) = x
-E< X

— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:

-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1

Aq
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Property 1: on minimal improving sets

-A €V minimal improving set
-1R(A) = x
-E< X

— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:

-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1

Aq
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Improving sets

Property 1: on minimal improving sets

-A €V minimal improving set
-1R(A) = x
-E< X

— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:

-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1

Aq 3
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Improving sets

Property 1: on minimal improving sets

-A €V minimal improving set
-1R(A) = x
-E< X

— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:

-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1

Aq 3
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Improving sets

Property 1: on minimal improving sets

-A €V minimal improving set
-1R(A) = x
-E< X

— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:

-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1
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Improving sets

Property 1: on minimal improving sets G
-A €V minimal improving set
-1R(A) = x
-e<x
— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:
-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1
Property 2: on sequences of x-improving sets Q

-Aq,...,Ar €SV sequence of x-improving sets
-diam(A4;) = O(logn/e)

-e<x

-A = UiAi

= forall i, forallv € A, Ir = O(log”n /) and minimal improving set A' € A.[v]NA such that IR(A') = x—¢
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-e<x
— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:
-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1
Property 2: on sequences of x-improving sets o

-Aq,...,Ar €SV sequence of x-improving sets
-diam(A4;) = O(logn/e)

-e<x

-A = UiAi

= forall i, forallv € A, Ir = O(log”n /) and minimal improving set A' € A.[v]NA such that IR(A') = x—¢
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-A €V minimal improving set
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-e<x
— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
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Improving sets

Property 1: on minimal improving sets G
-A €V minimal improving set
-1R(A) = x
-e<x
— forallv € A, 3r = O(logn/e) and minimal improving set A' € N.[v]N A such that IR(A) = x—¢
Sequence of x-improving sets:
-Aq,..., AL, CV
- A1 minimal improving set with IR(A1) = x
-forall i > 1, A; minimal improving set with IR(A;) = x after having flipped Aq,...,A;_1
Property 2: on sequences of x-improving sets o

-Aq,...,Ar €SV sequence of x-improving sets
-diam(A4;) = O(logn/e)

-e<x

-A = UiAi

= forall i, forallv € A, Ir = O(log”n /) and minimal improving set A' € A.[v]NA such that IR(A') = x—¢
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment

e Fori =1to 100logn times, do
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment
e Fori =1to 100logn times, do
-Run MPX to get an (a,d)-decomposition
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment

e Fori =1to 100logn times, do

-Run MPX to get an (a,d)-decomposition
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment C1 G
e Fori =1to 100logn times, do 2.

-Run MPX to get an (a,d)-decomposition l Cs

- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment

01 Cl

e Fori =1to 100logn times, do R@ %
B4 .

-Run MPX to get an (a,d)-decomposition Q@ @ .

- C = current cluster 02

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment

01 Cl

e Fori =1to 100logn times, do R@ %
B4 .

-Run MPX to get an (a,d)-decomposition Q@ @ .

- C = current cluster 02

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

- Flip all sets in o, in order
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment

01 Cl

e Fori =1to 100logn times, do R@ %
B4 .

-Run MPX to get an (a,d)-decomposition Q@ @ .

- C = current cluster 02

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes
- Flip all sets in o, in order

-Ajx1=A; +10¢
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The algorithm

e Set A; = 1/4 (initial IR), e = 1/(20001ogn) (Properties 1,2), a = ©(e*/log’n) (MPX)

e Start with a random coloring assignment

01 Cl
e Fori =1to 100logn times, do R@ %

- Run MPX to get an (a,d)-decomposition Q@

- C = current cluster

e -

02

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢
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- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes




The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(gz/loan) (MPX)

e Start with a random coloring assignment
e Fori =1to 100logn times, do
- Run MPX to get an (a,d)-decomposition

- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢
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The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(52/10g2n) (MPX)

e Start with a random coloring assignment
e Fori =1to 100logn times, do
- Run MPX to get an (a,d)-decomposition

- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢
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The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(52/10g2n) (MPX)

e Start with a random coloring assignment
e Fori =1to 100logn times, do
- Run MPX to get an (a,d)-decomposition

- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢

e Return current coloring
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The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(52/10g2n) (MPX)

e Start with a random coloring assignment

e Fori =1to 100logn times, do

- Run MPX to get an (a,d)-decomposition
- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢

e Return current coloring

Claim 1: The running time of the algorithm is O(d -logn) = O(logzn/a) = 0(log’n)
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The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(52/10g2n) (MPX)

e Start with a random coloring assignment

e Fori =1to 100logn times, do

- Run MPX to get an (a,d)-decomposition
- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢

e Return current coloring

Claim 1: The running time of the algorithm is O(d -logn) = O(logzn/a) = 0(log’n)
Proof 1: O(logn) phases. Each phase costs O(d). By MPX,d =O(logn/a). By def. a = O(l/log4n).
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The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(52/10g2n) (MPX)

e Start with a random coloring assignment

e Fori =1to 100logn times, do

- Run MPX to get an (a,d)-decomposition
- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢

e Return current coloring

Claim 1: The running time of the algorithm is O(d -logn) = O(logzn/a) = 0(log’n)

Claim 2: After phase i, any min. imp. set with IR = A; of diameter O(logn /) lies “very close” to all previous border nodes
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The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(52/10g2n) (MPX)

e Start with a random coloring assignment

e Fori =1to 100logn times, do

- Run MPX to get an (a,d)-decomposition
- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢

e Return current coloring Property 1 + Property 2

Claim 1: The running time of the algorithm is O(d -logn) = O(logzn/a) = 0(log’n)

Claim 2: After phase i, any min. imp. set with IR = A; of diameter O(logn /) lies “very close” to all previous border nodes
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The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(52/10g2n) (MPX)

e Start with a random coloring assignment

e Fori =1to 100logn times, do

- Run MPX to get an (a,d)-decomposition
- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢

e Return current coloring Property 1 + Property 2

Claim 1: The running time of the algorithm is O(d -logn) = O(logzn/a) = 0(log’n)

Claim 2: After phase i, any min. imp. set with IR = A; of diameter O(logn /) lies “very close” to all previous border nodes

Claim 3: With probability =1 — 1/n10, there is no error after 100logn phases
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The algorithm

e Set A1 =1/4 (initial IR), e = A/(20001logn) (Properties 1,2), a = @(52/10g2n) (MPX)

e Start with a random coloring assignment

e Fori =1to 100logn times, do

- Run MPX to get an (a,d)-decomposition
- C = current cluster

- Find maximal sequence o of A;-improving sets of diam. O(logn/¢) inside G[C] that do not contain border nodes

PHASE

- Flip all sets in o, in order

-Ajx1=A; +10¢

e Return current coloring Property 1 + Property 2

Claim 1: The running time of the algorithm is O(d -logn) = O(logzn/a) = 0(log’n)

Claim 2: After phase i, any min. imp. set with IR = A; of diameter O(logn /) lies “very close” to all previous border nodes

Claim 3: With probability = 1 — 1/n10, there is no error after 100logn phases - MPX guarantees + Claim 2
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods
O
» O
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods

B o 6 6 o
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods

S e e b oo b G
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods

oo b o bo bo b

®
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods ® ®
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with
A=3(r=1)

valid neighborhoods ® © ©

P U S S S S S
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with

A=3(r=1)
valid neighborhoods ® ® ® o
: IS S S
O ® O © O O @,
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Local potential problems

0,A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with

A=3(r=1)
valid neighborhoods ® ® ® o
: IS S S
O ® O © O O @,

invalid neighborhoods
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

locally optimal cut with

A=3(r=1)
valid neighborhoods ® ® ® o
O o—© O O O O
invalid neighborhoods ® ® ® ®
I I ®o—0 ®o—©0 0O o0
o—© o—© O O @, O
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

e Pot: G, A = Rxg assigns a potential to every labeled neighborhood
of radius r and max degree A

locally optimal cut with

A=3(r=1)
valid neighborhoods ® ® ® o
: IS S S
O ® O © O O @,

invalid neighborhoods ® ® ® ®
I I e O O o o6 o o o
e o o o O O O O
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or>0 A>0

Local potential problems

e C list of valid neighborhoods of radius r and max degree A

e Pot: G, A = Rxg assigns a potential to every labeled neighborhood
of radius r and max degree A

locally optimal cut with

A=3(r=1)
valid neighborhoods ® ® ® o
O o—© O O O O
Pot=0 Pot=0 Pot=1 Pot=1 Pot=0 Pot =0 Pot=1 Pot=0 Pot=1 Pot=0
invalid neighborhoods ® ® ® ®
I I 0O o 0O 0O ® 0O
o— 0 o 0O O O O O
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or>0 A>0

Local potential problems

e C list of valid neighborhoods of radius r and max degree A

e Pot: G, A = Rxg assigns a potential to every labeled neighborhood

of radius r and max degree A

locally optimal cut with

A=3(r=1)

valid neighborhoods ® ® ® ®
: b e ko b oo o e e
O O O O O O

Pot=0 Pot=0 Pot=1 Pot=1 Pot=0 Pot=0 Pot=1 Pot=0 Pot=1 Pot=0
invalid neighborhoods ¢ ® ® ¢
I I O O o O o O
O O O O O O
Pot=1 Pot=1 Pot =2 Pot =2 Pot =2 Pot =3 Pot =2 Pot=3

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days




or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

e Pot: G, A = Rxg assigns a potential to every labeled neighborhood

of radius r and max degree A

e For every invalid neighbornood, there is a way to relabel the central

Local potential problems

locally optimal cut with

node to decrease the local (thus, global) potential A=3(r=1)
valid neighborhoods ® ¢ ¢ ®
: AU SV SN S A SR> S 4
O o ©° O O O O
Pot=0 Pot=0 Pot=1 Pot=1 Pot=0 Pot=0 Pot=1 Pot=0 Pot=1 Pot=0
invalid neighborhoods ® ® ¢ ®
I I ®o—©0 ®o—©0 ®o—©0 ®o—©
o—©0 o—©O O O O O
Pot=1 Pot=1 Pot =2 Pot =2 Pot =2 Pot=3 Pot =2 Pot=3
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

e Pot: G, A = Rxg assigns a potential to every labeled neighborhood
of radius r and max degree A

locally optimal cut with
A=3(r=1)

e For every invalid neighbornood, there is a way to relabel the central
node to decrease the local (thus, global) potential

valid neighborhoods ® ® ® o

S e b e boebobot o b 4

Pot =0 /Pot=o\ Pot=1  Pot=1  Pot=0  Pot=0  Pot=1  Pot=0  Pot=1  Pot=0
7 \

invalid neighborfioods ® ® ® ®

I I O o O o O O
e O O » O » »
Pot=1 Pot=1 Pot =2 Pot =2 Pot =2 Pot=3 Pot =2 Pot =3
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

e Pot: G, A = Rxg assigns a potential to every labeled neighborhood
of radius r and max degree A

e For every invalid neighborhood, there is a way to relabel the central locally optimal cut with
node to decrease the local (thus, global) potential A=3(r=1)
valid neighborhoods ® ¢ ¢ ®
- O >
pot= 0 /Pot 0% Pot=1 Pot =1 Pot=0  Pot=0 o<1 Pot=0  Pot=1  Poteo
O O O

invalid neighborfioods

I I e —0 6o o6 o o o
o0 0o o o o o

Pot=1 Pot=1 Pot =2 Pot =2 Pot =2 Pot =3 Pot =2 Pot =3
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

e Pot: G, A = Rxg assigns a potential to every labeled neighborhood
of radius r and max degree A

e For every invalid neighbornood, there is a way to relabel the central

locally optimal cut with

node to decrease the local (thus, global) potential A=3(r=1)
valid neighborhoods ® ¢ ¢ ®
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Pot=1 Pot=1 Pot =2 Pot =2 Pot =2 Pot =3 Pot =2 Pot=3
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Local potential problems

or>0 A>0

e C list of valid neighborhoods of radius r and max degree A

e Pot: G, A = Rxg assigns a potential to every labeled neighborhood
of radius r and max degree A

e For every invalid neighborhood, there is a way to relabel the central locally optimal cut with
node to decrease the local (thus, global) potential A=3(r=1)
O O O O

valid neighborhoods

: b e ot

pot= 0 /Pot 0% Pot=1 Pot =1 Pot

invalid neighborfioods

o e 0le 6 e b et b b

Pot=1 Pot=1 Pot =2 Pot =2 Pot =2 Pot =3 Pot =2 Pot =3
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Recap & conclusions

Theorem:

For any local potential problem T, there exists a randomized LOCAL algorithm that solves IT with high probability
in time O(log6n). The latter can be derandomized into a deterministic LOCAL algorithm that solves 11 in time

O(log8 n poly(loglogn)).
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in time O(log6n). The latter can be derandomized into a deterministic LOCAL algorithm that solves 11 in time

O(log8 n poly(loglogn)).

Lower bound: - Q(logn)-rounds in deterministic LOCAL (in bounded-degree trees)

- Q(loglogn)-rounds in randomized LOCAL (in bounded-degree trees)
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Recap & conclusions

Theorem:

For any local potential problem T, there exists a randomized LOCAL algorithm that solves IT with high probability
in time O(loan). The latter can be derandomized into a deterministic LOCAL algorithm that solves 11 in time

O(log8 n poly(loglogn)).

Lower bound: - Q(logn)-rounds in deterministic LOCAL (in bounded-degree trees)

- Q(loglogn)-rounds in randomized LOCAL (in bounded-degree trees)

Questions: - Right deterministic complexity? Polynomial gap
- Right randomized complexity? Exponential gap
- Dependency in A? We actually give a O(poly(A)poly(logn))-time randomized/deterministic algorithm

- some further assumption on the problem family: it includes locally optimal cut

THANKS
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Proof of Property 1

Property 1: on minimal improving sets A

-A €V minimal improving set
-IR(A) = x
-e<x

— forallv € A, 3r = 0(logn/e) and minimal improving set A' € N.[v]N A such that IR(A") = x—¢
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Proof of Property 1

Property 1: on minimal improving sets A

-A €V minimal improving set
-IR(A) = x
-e<x

— forallv € A, 3r = 0(logn/e) and minimal improving set A' € N.[v]N A such that IR(A") = x—¢

Proof 1

-S; =M[v]ﬂA
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Proof of Property 1

Property 1: on minimal improving sets A

-A €V minimal improving set
-IR(A) = x
-e<x

— forallv € A, 3r = 0(logn/e) and minimal improving set A' € N.[v]N A such that IR(A") = x—¢

Proof 1
-S;=Ni[v]nA
-3i =0(logn/e) such that # edges in the cut (S;,A) is < (e/2)]|S;]|
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Proof of Property 1

Property 1: on minimal improving sets A

-A €V minimal improving set
-IR(A) = x
-e<x

— forallv € A, 3r = 0(logn/e) and minimal improving set A' € N.[v]N A such that IR(A") = x—¢

Proof 1
-S;=Ni[v]nA
-3i =0(logn/e) such that # edges in the cut (S;,A) is < (e/2)]|S;]|

- if not, exponential growth of S;: |S;| = (1 +e/(2A))i — |S100Alogn/£| > °0logn
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Proof of Property 1

Property 1: on minimal improving sets A

-A €V minimal improving set
-IR(A) = x
-e<x

— forallv € A, 3r = 0(logn/e) and minimal improving set A' € N.[v]N A such that IR(A') = x—¢

Proof 1
-Si=Ni[v]nA
- i =0(logn/e) such that # edges in the cut (S;,A) is < (g/2)|S;]
- if not, exponential growth of S;: |S;| = (1 +e/(2A))i — |S100Alogn/£| > o00logn

-Imp(A) < Imp(S;) +Imp(A\ S;) + 2size(S;,A)
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Proof of Property 1

Property 1: on minimal improving sets A

-A €V minimal improving set
-IR(A) = x
-e<x

— forallv € A, 3r = 0(logn/e) and minimal improving set A' € N.[v]N A such that IR(A') = x—¢

Proof 1
-S; =N;[v]nA
- i =0(logn/e) such that # edges in the cut (S;,A) is < (g/2)|S;]
- if not, exponential growth of S;: |S;| = (1 +e/(2A))i — |S100Alogn/£| > °0logn
-Imp(A) < Imp(S;) +Imp(A\ S;) + 2size(S;,A)

-Imp(S;) =2 IR(A)(|A| - A\ S;|) —€]S;]

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Proof of Property 1

Property 1: on minimal improving sets A

-A €V minimal improving set
-1R(A) =

-ELSX

— forallv € A, 3r = 0(logn/e) and minimal improving set A' € N.[v]N A such that IR(A') = x—¢

Proof 1
-S; =N;[v]nA
- i =0(logn/e) such that # edges in the cut (S;,A) is < (g/2)|S;]
- if not, exponential growth of S;: |S;| = (1 +e/(2A))i — |S100Alogn/£| > °0logn
-Imp(A) < Imp(S;) +Imp(A\ S;) + 2size(S;,A)

-Imp(S;) = IR(A)(JA[ - [A\S;]) —elS;

-Imp(S;) = IR(]S;|) —€lS;| = (x —€)]S;
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Proof of Property 2

Property 2: on sequences of x-improving sets

-Aq,...,A;, €V sequence of x-improving sets
-diam(4;) <d

-e<x

-A = UiAi

— forall i, forallv € A, 3r = O(dlogn/e) and minimal improving set A' € N.[v]NA such that IR(A") = x—¢
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Proof of Property 2

Property 2: on sequences of x-improving sets

-Aq,...,A;, €V sequence of x-improving sets
-diam(4;) <d

-e<x

-A = UiAi

— forall i, forallv € A, 3r = O(dlogn/e) and minimal improving set A' € N.[v]NA such that IR(A") = x—¢
Proof 2

- virtual graph H: nodes are A;s, edges are between influencing A;s
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Property 2: on sequences of x-improving sets

-Aq,...,A;, €V sequence of x-improving sets
-diam(4;) <d

-e<x

-A = UiAi

— forall i, forallv € A, 3r = O(dlogn/e) and minimal improving set A' € N.[v]NA such that IR(A") = x—¢
Proof 2
- virtual graph H: nodes are A;s, edges are between influencing A;s

- weights to nodes in V(H): for each A;, w(A;) = |A;|
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-e<x

-A = UiAi
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Proof 2
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Property 2: on sequences of x-improving sets
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Proof of Property 2

Property 2: on sequences of x-improving sets

-Aq,...,A;, €V sequence of x-improving sets
-diam(4;) <d

-e<x

-A = UiAi

— forall i, forallv € A, 3r = O(dlogn/e) and minimal improving set A' € N.[v]NA such that IR(A") = x—¢
Proof 2

- virtual graph H: nodes are A;s, edges are between influencing A;s

-weights to nodes in V(H): for each A;, w(A;) = |A;]

-8; =Ni[A;] (in H)

- i =0(logn/¢e) such that ZAJ-ESi+1\Siw(Aj) < (g/2) ZAjesiw(Aj)

- if not, exponential growth of weights but total weight is O(n)
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Proof of Property 2

Property 2: on sequences of x-improving sets

-Aq,...,A;, €V sequence of x-improving sets
-diam(4;) <d

-e<x

-A = UiAi

— forall i, forallv € A, 3r = O(dlogn/e) and minimal improving set A' € N.[v]NA such that IR(A") = x—¢
Proof 2

- virtual graph H: nodes are A;s, edges are between influencing A;s

-weights to nodes in V(H): for each A;, w(A;) = |A;]

-8; =Ni[A;] (in H)

- i =0(logn/¢e) such that ZAJ-ESi+1\Siw(AJ) < (g/2) ZAjesiw(Aj)

- if not, exponential growth of weights but total weight is O(n)
- Similar to Lemma 1, but now to go back to G we need to multiply by O(d) (diameter of the A;s)

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Proof of Claim 2
e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]
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Proof of Claim 2
e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i = 1, set Ng(logn/e)[B1]
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Proof of Claim 2
e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i = 1, set Mo (logn/e)[ B1] C,

- By contradiction, suppose min. imp. set A with IR = A1 is not contained |-s--------mmmmmemmmmmcm e

No(logn /) B1]
______
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Proof of Claim 2
e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i = 1, set Mo (logn/e)[ B1] C,
- By contradiction, suppose min. imp. set A with IR = A7 is not contained - P
- Maximality of the A{-improving sequence! Contradiction Ne(logn/e) [ B1]
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Proof of Claim 2
e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i = 1, set Mo (logn/e)[ B1] C,
- By contradiction, suppose min. imp. set A with IR = 11 is not contained ) P
- Maximality of the A1;-improving sequence! Contradiction Ne(ogn/e)lB1]
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Proof of Claim 2
e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i = 1, set Ng(logn/e)[B1]

- By contradiction, suppose min. imp. set A with IR = A1 is not contained |-sgm=n=msmmmmmmmmmememmocc e

- Maximality of the A{-improving sequence! Contradiction N@(logzn/82)l_Blj

- Suppose i > 1, set No(iogn/e)[Bil N [ Nj<i—1No(log2n/e2)[B;]]
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e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i = 1, set NV, B C ii C
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- By contradiction, suppose min. imp. set A with IR = A1 is not contained B1 --------------------
- Maximality of the A;-improving sequence! Contradiction _/_\_/ga_(_l_()_g__{l_/f%)_@_ﬂ _________________________
- Suppose i > 1, set No(logn/e)[Bi]l N[ Nj<i-1No(1og2n/:2)[B;]]

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Proof of Claim 2

e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i = 1, set NV, B C ii C

P ®(logn/£)[ 1] 1 N@(lc:)gn/{e)[lBZ:l 2
- By contradiction, suppose min. imp. set A with IR = A1 is not contained B1 --------------------
- Maximality of the A;-improving sequence! Contradiction :/_\_[9(_1_0_%_{1_/_(?2_)_!?_1! _________________________
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- By contradiction, suppose min. imp. set A with IR = A; is not contained
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Proof of Claim 2

e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i =1, set B C ] C

P ®(logn/£)[ 1] 1 N@(lc:)gn/{e)[EBZ:l 2
- By contradiction, suppose min. imp. set A with IR = A1 is not contained B1 --------------------
- Maximality of the A;-improving sequence! Contradiction _/_\_/9(_1_()_%_{1_/52_)_!?_1!__ B
- Suppose i > 1, set No(logn/e)[Bi]l N[ Nj<i-1No(1og2n/:2)[B;]] -

- By contradiction, suppose min. imp. set A with IR = A; is not contained

- A must be inside Ng(ogn/e)[Bi] otherwise we break maximality
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Proof of Claim 2

e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i =1, set B C ] C

P ®(logn/£)[ 1] 1 N@(lc:)gn/{e)[EBZ:l 2
- By contradiction, suppose min. imp. set A with IR = A1 is not contained B1 --------------------
- Maximality of the A;-improving sequence! Contradiction _/_\_/9(_1_()_%_{1_/52_)_!?_1!__ B
- Suppose i > 1, set No(logn/e)[Bi]l N[ Nj<i-1No(1og2n/:2)[B;]] -

- By contradiction, suppose min. imp. set A with IR = A; is not contained
- A must be inside Ng(ogn/e)[Bi] otherwise we break maximality

- 37 <i—1such that A is not inside Ngieg2,/62)[Bj] = A is fully within some cluster C at phase j
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e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i =1, set B C ] C

P l ®(logn/£)[ 1] 1 N@(lc:)gn/{e)[EBZ:l 2
- By contradiction, suppose min. imp. set A with IR = A1 is not contained B1 --------------------
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- Suppose i > 1, set No(logn/e)[Bi]l N[ Nj<i-1No(1og2n/:2)[B;]] -

- By contradiction, suppose min. imp. set A with IR = A; is not contained
- A must be inside Ng(ogn/e)[Bi] otherwise we break maximality
- 37 <i—1such that A is not inside Ngieg2,/62)[Bj] = A is fully within some cluster C at phase j

- consider all the min. imp. sets flipped after phase j: sequence of A;,1-improving sets
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Proof of Claim 2

e A1=1/4,6=1/(2000logn), a = @(52/10g2n)

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i =1, set B C ] C

P l ®(logn/£)[ 1] 1 N@(lc:)gn/{e)[EBZ:l 2
- By contradiction, suppose min. imp. set A with IR = A1 is not contained B1 --------------------
- Maximality of the A;-improving sequence! Contradiction _/_\_/9(_1_()_%_{1_/52_)_!?_1!__ B
- Suppose i > 1, set No(logn/e)[Bi]l N[ Nj<i-1No(1og2n/:2)[B;]] -

- By contradiction, suppose min. imp. set A with IR = A; is not contained

- A must be inside Ng(ogn/e)[Bi] otherwise we break maximality

- 37 <i—1such that A is not inside Ngieg2,/62)[Bj] = A is fully within some cluster C at phase j
- consider all the min. imp. sets flipped after phase j: sequence of A;,1-improving sets

- Property 2: 3 min. imp. set A’ inside No(log2n/e2)[A ] with IR(A") = Aip1—€2 A,

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Proof of Claim 2
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Claim 2: After phase i, any MIS with IR = A; of diameter O(logn /) lies in No(iogn/e)[Bil N[ Nj<i—1No(og?n/e2)[B;]]

Proof 2: By induction on the phases.

- Base case phase i =1, set B C ] C G
p l @(logn/e)[ 1] ! N@(lc}gn/{e)[EBZ:l

- By contradiction, suppose min. imp. set A with IR = A1 is not contained B1 --------------------

- Maximality of the A;-improving sequence! Contradiction _/_\_/9(_1_93_{1_/52_)_!?_1!__ _ ________________

- Suppose © > 1, set N@(logn/g)[Bi] N [mjsi—lN®(log2n/£2)[Bj]:| -

- By contradiction, suppose min. imp. set A with IR = A; is not contained

- A must be inside Ng(ogn/e)[Bi] otherwise we break maximality

- 37 <i—1such that A is not inside Ngieg2,/62)[Bj] = A is fully within some cluster C at phase j

- consider all the min. imp. sets flipped after phase j: sequence of A;,1-improving sets

- Property 2: 3 min. imp. set A’ inside No(log2n/e2)[A ] with IR(A") = Aj+1— €= A/= Dbroken maximality in Phase j
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Proof of Claim 3

e A;=1/4, e=1/(2000logn), a = O(c*/log’n)

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Proof of Claim 3

e l1=1/4,e=21/(2000logn), a = @(62/10g2n)

From MPX: For each v € V, with probability = 1/2 there exists a cluster C such that Ng(1/a)[v] € C.
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Proof of Claim 3

e l1=1/4,e=21/(2000logn), a = @(62/log2n)

From MPX: For each v € V, with probability = 1/2 there exists a cluster C such that Ng(1/a)[v] € C.

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn/¢) lies in No(iogn/e)[Bi 1N [ Nj<i—1No(log2n/e2)[B;]]
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Proof of Claim 3

e l1=1/4,e=21/(2000logn), a = @(82/10g2n)

From MPX: For each v € V, with probability = 1/2 there exists a cluster C such that Ng(1/a)[v] € C.

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn/¢) lies in No(iogn/e)[Bi 1N [ Nj<i—1No(log2n/e2)[B;]]

Claim 3: With probability =1 — l/nlo, there is no error after 100logn phases
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Proof of Claim 3

e l1=1/4,e=21/(2000logn), a = @(82/10g2n)
From MPX: For each v € V, with probability = 1/2 there exists a cluster C such that Ng(1/a)[v] € C.

Claim 2: After phase i, any MIS with IR = A; of diameter O(logn/¢) lies in No(iogn/e)[Bi 1N [ Nj<i—1No(log2n/e2)[B;]]

Claim 3: With probability =1 — l/nlo, there is no error after 100logn phases

Proof 3: By contradiction, there is an error at the end of phase 100logn. Note that A19910gr < 3/4.
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Proof of Claim 3

e l1=1/4,e=21/(2000logn), a = @(82/10g2n)

From MPX: For each v € V, with probability = 1/2 there exists a cluster C such that Ng(1/a)[v] € C.
Claim 2: After phase i, any MIS with IR = A; of diameter O(logn/¢) lies in No(iogn/e)[Bi 1N [ Nj<i—1No(log2n/e2)[B;]]

Claim 3: With probability =1 — l/nlo, there is no error after 100logn phases

Proof 3: By contradiction, there is an error at the end of phase 100logn. Note that A19910gr < 3/4.

- Node v colored with green with > deg(v)/2 neighbors of color green

Francesco d’Amore - Distributed Algorithms for Potential Problems - Helsinki Algorithms & Theory Days



Proof of Claim 3

e l1=1/4,e=21/(2000logn), a = @(82/10g2n)

From MPX: For each v € V, with probability = 1/2 there exists a cluster C such that Ng(1/a)[v] € C.
Claim 2: After phase i, any MIS with IR = A; of diameter O(logn/¢) lies in No(iogn/e)[Bi 1N [ Nj<i—1No(log2n/e2)[B;]]

Claim 3: With probability =1 — l/nlo, there is no error after 100logn phases

Proof 3: By contradiction, there is an error at the end of phase 100logn. Note that A19910gr < 3/4.

- Node v colored with green with > deg(v)/2 neighbors of color green

-{v} is an improving set, and IR({v}) = 1
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Proof of Claim 3

e l1=1/4,e=21/(2000logn), a = @(82/10g2n)

From MPX: For each v € V, with probability = 1/2 there exists a cluster C such that Ng(1/a)[v] € C.
Claim 2: After phase i, any MIS with IR = A; of diameter O(logn/¢) lies in No(iogn/e)[Bi 1N [ Nj<i—1No(log2n/e2)[B;]]

Claim 3: With probability =1 — l/nlo, there is no error after 100logn phases

Proof 3: By contradiction, there is an error at the end of phase 100logn. Note that A19910gr < 3/4.

- Node v colored with green with > deg(v)/2 neighbors of color green
-{v} is an improving set, and IR({v}) = 1

- By MPX guarantees, 3i < 100logn such that Mg(1/4)[v] is contained
in some cluster in phase i w.p. 1— 1/21001‘)”_]L >1- 1/n99
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Proof of Claim 3

e l1=1/4,e=21/(2000logn), a = @(82/10g2n)

From MPX: For each v € V, with probability = 1/2 there exists a cluster C such that Ng(1/a)[v] € C.
Claim 2: After phase i, any MIS with IR = A; of diameter O(logn/¢) lies in No(iogn/e)[Bi 1N [ Nj<i—1No(log2n/e2)[B;]]

Claim 3: With probability =1 — l/nlo, there is no error after 100logn phases

Proof 3: By contradiction, there is an error at the end of phase 100logn. Note that A19910gr < 3/4.
- Node v colored with green with > deg(v)/2 neighbors of color green
-{v} is an improving set, and IR({v}) = 1

- By MPX guarantees, 3i < 100logn such that Mg(1/4)[v] is contained
in some cluster in phase i w.p. 1— 1/210010gn_]L >1- 1/n99

- = @(52/log2n) is chosen large enough so that Claim 2 is contradicted
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