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Outline

I Based on earlier and ongoing work with Mateusz Michałek (Konstanz)

I Talk outline:

1. Tensors, tensor rank, asymptotic rank/tensor exponents
2. Relevance of tensor exponents in the study of arithmetic circuits and algorithms
3. The asymptotic rank conjecture
4. Invariant tensors
5. A candidate approach for rank upper bounds via orbits of subgroups (work in progress)



Preliminaries: Tensors

I We work in coordinates, all tensors have order three

I An element T ∈ Cd×d×d = Cd ⊗ Cd ⊗ Cd is a tensor of shape d × d × d

I For i, j, k ∈ [d], we write Ti, j,k for the entry of T at position (i, j, k)

I Example.
The 4 × 4 × 4 tensor MM2 is displayed below:

MM2 =



1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1





Preliminaries: Tensor rank

I A tensor T ∈ Cd×d×d has rank one if there exist three nonzero vectors a, b, c ∈ Cd

such that T = a ⊗ b ⊗ c; or, what is the same, Ti, j,k = aibjck for all i, j, k ∈ [d]

I The rank R(T ) of a tensor T ∈ Cd×d×d is the least nonnegative integer r such that T
can be wri�en as a sum of r rank one tensors

I We have 0 ≤ R(T ) ≤ d2; it is NP-hard to compute R(T ) for given T (Håstad 1990)

I Example. The rank of MM2 is 7 (Strassen 1969)



Preliminaries: Kronecker product and Kronecker powers

I Let S ∈ Cd×d×d and T ∈ Ce×e×e be tensors

I The Kronecker product S ⊗ T ∈ Cde×de×de is defined for all i, j, k ∈ [d] and
u, v,w ∈ [e] by

(S ⊗ T )ie+u, je+v,ke+w = Si, j,kTu,v,w

I For S ∈ Cd×d×d and a positive integer n, we write S⊗n ∈ Cd
n×dn×dn for the Kronecker

product of n copies of S

I We say that S⊗n is the nth Kronecker power of S



Example: Kronecker powers

S =
[

0 1
1 0

1 0
0 0

]

S⊗2 =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



S⊗3 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





Tensor exponents and asymptotic rank

I The exponent σ (T ) of a tensor T ∈ Cd×d×d is the infimum of all σ > 0 such that
R(T ⊗n) ≤ dσn+o(n) holds

I Equivalently, the asymptotic rank of T is R̃(T ) = limn→∞ R(T ⊗n)1/n = dσ (T )

I Exponents of constant-size tensors are fundamental to the study of algorithms

I The exponent ω of square matrix multiplication satisfies ω = 2σ (MM2)
[Strassen 1986/1988]

I The set cover conjecture fails if the exponent of a specific 7 × 7 × 7 tensor is su�iciently
close to 1 [Björklund & K. 2024] (see also [Pra� 2024])

I If specific large but constant-size tensors have their exponents su�iciently close to 1,
then the chromatic number of a given n-vertex graph can be computed in O(1.99982n)
time [Björklund, Curticapean, Husfeldt, K., & Pra� 2025]

I If specific large but constant-size tensors have their exponents su�iciently close to 1,
then the permanent of an n × n matrix can be computed with a uniform arithmetic
circuit of size O(1.9n) [Björklund, K., Koana, & Nederlof 2025]



Example: The 7 × 7 × 7 tensor [Björklund & K. 2024]

Q7 =



0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0

0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



If σ (Q7) ≤ 1.001 then the set cover conjecture is false

[We know that σ (Q7) ≤ 1.069]



The asymptotic rank conjecture

I Define the worst-case tensor exponent for d × d × d tensors by

σ (d ) = sup
T ∈Cd×d×d

σ (T )

I It is immediate that σ (1) = 1; it is a nontrivial consequence of the geometry of tensors
that σ (2) = 1; already σ (3) is unknown—it is known that σ (3) = 1 implies ω = 2

I Strassen (1988, implicit) has shown that σ (d ) ≤ 2ω/3 for all d ∈ Z≥1; the following
bold conjecture has been made by many

I Conjecture. (Asymptotic rank conjecture)
For all d ∈ Z≥1 it holds that σ (d ) = 1

I [Strassen (1994) has conjectured σ (T ) = 1 for tight and concise tensors T .]



But how to approach
the asymptotic rank conjecture?

Caveat. This talk does not give a proper survey—for background and recent work,
cf. e.g. (Wigderson & Zuiddam 2023), (Christandl, Hoeberechts, Nieuwboer, Vrana, &

Zuiddam 2025), (K. & Michałek 2025) as well as references therein



One possible approach: Invariant tensors

I Let d, n ∈ Z≥1

I Let us write Sn for the symmetric group on [n]

I We assume a permutation g ∈ Sn acts
1. on [n] by permutation;
2. on [d]n by permuting the entries of an n-tuple over [d]; and
3. on Cd

n×dn×dn by permuting the rows, columns, and levels as in [d]n

I A tensor T ∈ Cd
n×dn×dn is Sn-invariant if gT = T for all g ∈ Sn

I Let us write (Cd
n×dn×dn )Sn for the set of all Sn-invariant tensors in Cd

n×dn×dn

I Theorem (K. & Michałek 2025).
For all d ∈ Z≥1 we have σ (d ) = limn→∞

1
n logd maxT ∈(Cdn×dn×dn )Sn R(T )

I The space (Cd
n×dn×dn )Sn can be decomposed into smaller invariant subspaces using

tools from representation theory—in this talk we will not enter into detailed discussion



A subapproach: Upper bounds via orbits of subgroups

I Focus on small d ; e.g. d = 2 or d = 3 in particular

I While the vector space Cd
n×dn×dn has dimension d3n,

the invariant subspace (Cd
n×dn×dn )Sn has dimension only

(
n+d3−1
d3−1

)
I To show that tensors in the vector space (Cd

n×dn×dn )Sn have low rank,
it su�ices to present a basis such that each tensor T in the basis is the sum of
short G-orbits of rank-one tensors for one or more permutation groups G ≤ Sn

I The larger the group G ≤ Sn, the shorter the orbits; a G-orbit has length at most n!/|G |

I A natural family of essentially maximal subgroups of Sn are the Young subgroups
Sν = Sn1 × Sn2 × · · · × Snp for an integer partition ν = (n1, n2, . . . , np) of n to p parts

I For d = 2, one can show that Young subgroups with at most two parts su�ice to span
the invariant space for any n, thus giving the already known σ (2) = 1

I For d = 3, work in progress ...
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