Invariant tensors and asymptotic rank of small tensors

Helsinki Algorithms and Theory Days 28 August 2025

Petteri Kaski

Department of Computer Science
Aalto University

Outline

- ► Based on earlier and ongoing work with **Mateusz Michałek** (Konstanz)
- ► Talk outline:
 - 1. Tensors, tensor rank, asymptotic rank/tensor exponents
 - 2. Relevance of tensor exponents in the study of arithmetic circuits and algorithms
 - 3. The asymptotic rank conjecture
 - 4. Invariant tensors
 - 5. A candidate approach for rank upper bounds via orbits of subgroups (work in progress)

Preliminaries: Tensors

- ► We work in coordinates, all tensors have order three
- ► An element $T \in \mathbb{C}^{d \times d \times d} = \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ is a **tensor** of **shape** $d \times d \times d$
- ► For $i, j, k \in [d]$, we write $T_{i,j,k}$ for the **entry** of T at **position** (i, j, k)
- ► Example.
 The 4 × 4 × 4 tensor MM₂ is displayed below:

Preliminaries: Tensor rank

- ► A tensor $T \in \mathbb{C}^{d \times d \times d}$ has **rank one** if there exist three nonzero vectors $a, b, c \in \mathbb{C}^d$ such that $T = a \otimes b \otimes c$; or, what is the same, $T_{i,i,k} = a_i b_i c_k$ for all $i, j, k \in [d]$
- ► The **rank** R(T) of a tensor $T \in \mathbb{C}^{d \times d \times d}$ is the least nonnegative integer r such that T can be written as a sum of r rank one tensors
- ▶ We have $0 \le R(T) \le d^2$; it is NP-hard to compute R(T) for given T (Håstad 1990)
- ► Example. The rank of MM₂ is 7 (Strassen 1969)

Preliminaries: Kronecker product and Kronecker powers

- ▶ Let $S \in \mathbb{C}^{d \times d \times d}$ and $T \in \mathbb{C}^{e \times e \times e}$ be tensors
- ► The **Kronecker product** $S \otimes T \in \mathbb{C}^{de \times de \times de}$ is defined for all $i, j, k \in [d]$ and $u, v, w \in [e]$ by

$$(S \otimes T)_{ie+u, je+v, ke+w} = S_{i,j,k} T_{u,v,w}$$

- ► For $S \in \mathbb{C}^{d \times d \times d}$ and a positive integer n, we write $S^{\otimes n} \in \mathbb{C}^{d^n \times d^n \times d^n}$ for the Kronecker product of n copies of S
- ► We say that $S^{\otimes n}$ is the n^{th} Kronecker power of S

Example: Kronecker powers

$$S = \left[\begin{array}{c|c} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

$$S^{\otimes 2} = \begin{bmatrix} 0001 & 0010 & 0100 & 1000 \\ 0010 & 0000 & 1000 & 0000 \\ 0100 & 1000 & 0000 & 0000 \\ 1000 & 0000 & 0000 & 0000 \end{bmatrix}$$

Tensor exponents and asymptotic rank

- ► The **exponent** $\sigma(T)$ of a tensor $T \in \mathbb{C}^{d \times d \times d}$ is the infimum of all $\sigma > 0$ such that $R(T^{\otimes n}) \leq d^{\sigma n + o(n)}$ holds
- Equivalently, the **asymptotic rank** of T is $\tilde{R}(T) = \lim_{n \to \infty} R(T^{\otimes n})^{1/n} = d^{\sigma(T)}$
- ► Exponents of *constant-size* tensors are fundamental to the study of algorithms
 - ► The exponent ω of square matrix multiplication satisfies $\omega = 2\sigma(\text{MM}_2)$ [Strassen 1986/1988]
 - ► The set cover conjecture fails if the exponent of a specific 7 × 7 × 7 tensor is sufficiently close to 1 [Björklund & K. 2024] (see also [Pratt 2024])
 - ► If specific large but constant-size tensors have their exponents sufficiently close to 1, then the chromatic number of a given n-vertex graph can be computed in $O(1.99982^n)$ time [Björklund, Curticapean, Husfeldt, K., & Pratt 2025]
 - ▶ If specific large but constant-size tensors have their exponents sufficiently close to 1, then the permanent of an $n \times n$ matrix can be computed with a uniform arithmetic circuit of size $O(1.9^n)$ [Björklund, K., Koana, & Nederlof 2025]

Example: The $7 \times 7 \times 7$ tensor [Björklund & K. 2024]

If $\sigma(Q_7) \leq 1.001$ then the set cover conjecture is false

[We know that $\sigma(Q_7) \leq 1.069$]

The asymptotic rank conjecture

▶ Define the **worst-case** tensor exponent for $d \times d \times d$ tensors by

$$\sigma(d) = \sup_{T \in \mathbb{C}^{d \times d \times d}} \sigma(T)$$

- ▶ It is immediate that $\sigma(1) = 1$; it is a nontrivial consequence of the geometry of tensors that $\sigma(2) = 1$; already $\sigma(3)$ is unknown—it is known that $\sigma(3) = 1$ implies $\omega = 2$
- ► Strassen (1988, implicit) has shown that $\sigma(d) \le 2\omega/3$ for all $d \in \mathbb{Z}_{\ge 1}$; the following bold conjecture has been made by many
- ► Conjecture. (Asymptotic rank conjecture) For all $d \in \mathbb{Z}_{\geq 1}$ it holds that $\sigma(d) = 1$
- ► [Strassen (1994) has conjectured $\sigma(T) = 1$ for tight and concise tensors T.]

But how to approach the asymptotic rank conjecture?

Caveat. This talk does not give a proper survey—for background and recent work, cf. e.g. (Wigderson & Zuiddam 2023), (Christandl, Hoeberechts, Nieuwboer, Vrana, & Zuiddam 2025), (K. & Michałek 2025) as well as references therein

One possible approach: Invariant tensors

- ▶ Let $d, n \in \mathbb{Z}_{\geq 1}$
- ► Let us write S_n for the **symmetric group** on [n]
- ▶ We assume a permutation $g \in S_n$ acts
 - 1. on [n] by permutation;
 - 2. on $[d]^n$ by permuting the entries of an *n*-tuple over [d]; and
 - 3. on $\mathbb{C}^{d^n \times d^n \times d^n}$ by permuting the rows, columns, and levels as in $[d]^n$
- ► A tensor $T \in \mathbb{C}^{d^n \times d^n \times d^n}$ is S_n -invariant if gT = T for all $g \in S_n$
- ► Let us write $(\mathbb{C}^{d^n \times d^n \times d^n})^{S_n}$ for the set of all S_n -invariant tensors in $\mathbb{C}^{d^n \times d^n \times d^n}$
- ► Theorem (K. & Michałek 2025). For all $d \in \mathbb{Z}_{\geq 1}$ we have $\sigma(d) = \lim_{n \to \infty} \frac{1}{n} \log_d \max_{T \in (\mathbb{C}^{d^n \times d^n \times d^n})^{S_n}} R(T)$
- ► The space $(\mathbb{C}^{d^n \times d^n \times d^n})^{S_n}$ can be decomposed into smaller invariant subspaces using tools from representation theory—in this talk we will not enter into detailed discussion

A subapproach: Upper bounds via orbits of subgroups

- Focus on small d; e.g. d = 2 or d = 3 in particular
- ▶ While the vector space $\mathbb{C}^{d^n \times d^n \times d^n}$ has dimension d^{3n} , the invariant subspace $(\mathbb{C}^{d^n \times d^n \times d^n})^{S_n}$ has dimension only $\binom{n+d^3-1}{d^3-1}$
- ► To show that tensors in the vector space $(\mathbb{C}^{d^n \times d^n \times d^n})^{S_n}$ have low rank, it suffices to present a basis such that each tensor T in the basis is the sum of short G-orbits of rank-one tensors for one or more permutation groups $G \leq S_n$
- ▶ The larger the group $G \le S_n$, the shorter the orbits; a G-orbit has length at most n!/|G|
- A natural family of essentially maximal subgroups of S_n are the **Young subgroups** $S_{\nu} = S_{n_1} \times S_{n_2} \times \cdots \times S_{n_p}$ for an integer partition $\nu = (n_1, n_2, \dots, n_p)$ of n to p parts
- ► For d = 2, one can show that Young subgroups with at most two parts suffice to span the invariant space for any n, thus giving the already known $\sigma(2) = 1$
- For d = 3, work in progress ...

Summary

- ► Based on earlier and ongoing work with **Mateusz Michałek** (Konstanz)
- ► Talk outline:
 - 1. Tensors, tensor rank, asymptotic rank/tensor exponents
 - 2. Relevance of tensor exponents in the study of arithmetic circuits and algorithms
 - 3. The asymptotic rank conjecture
 - 4. Invariant tensors
 - 5. A candidate approach for rank upper bounds via orbits of subgroups (work in progress)