Indistinguishability Obfuscation

and its Connections to Proof Complexity

Christopher Brzuska

Aalto University, Finland

Russell

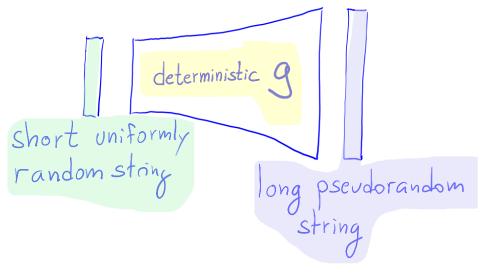
Goals If your only take-away from this talk is the definition, that's not a bad outcome.

Indistinguishability Obfuscation (iO) - Definition

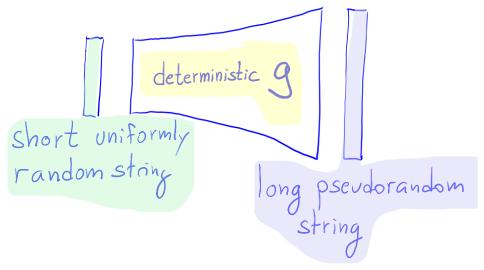
iO is powerful!

How can iO be useful to you? Lower bounds.

Fun open questions. Not recommendations.

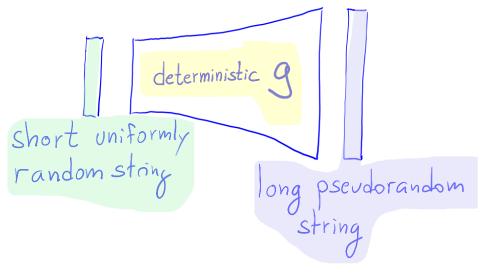


For all polynomial-time
$$A$$
 $(g(x)) \approx A'(y)$



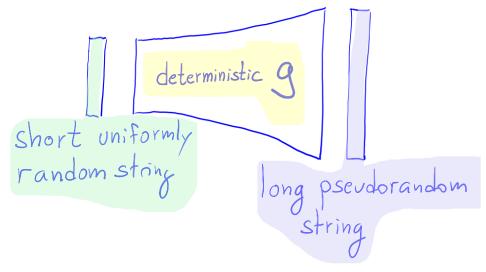
For all polynomial-time
$$A$$

 $Pr[1=A'(g(x))] \approx A'(y)$



For all polynomial-time
$$A$$

$$Pr[1=A'(g(x))] \approx Pr[1=A'(y)]$$

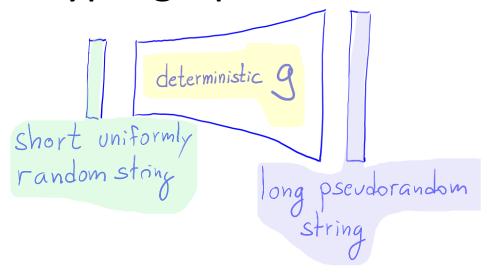


For all polynomial-time
$$A$$

$$P_r \left[1 = A \left(g(x) \right) \right] \approx P_r \left[1 = A \left(y \right) \right]$$

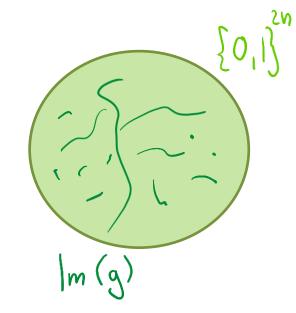
$$x \in \{0,1\}^n$$

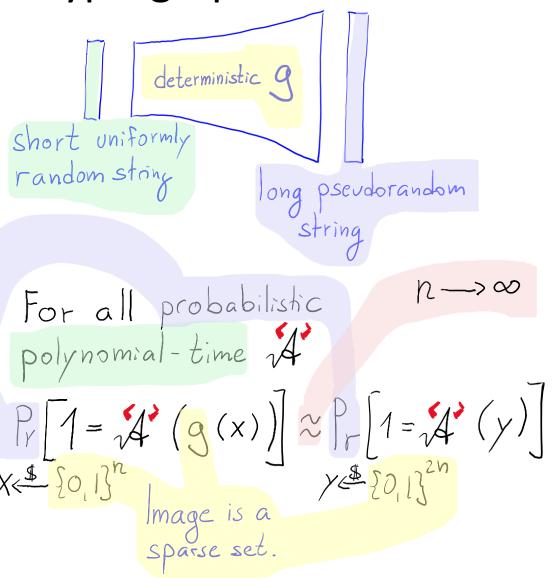
$$y \in \{0,1\}^n$$

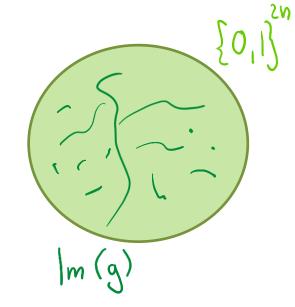


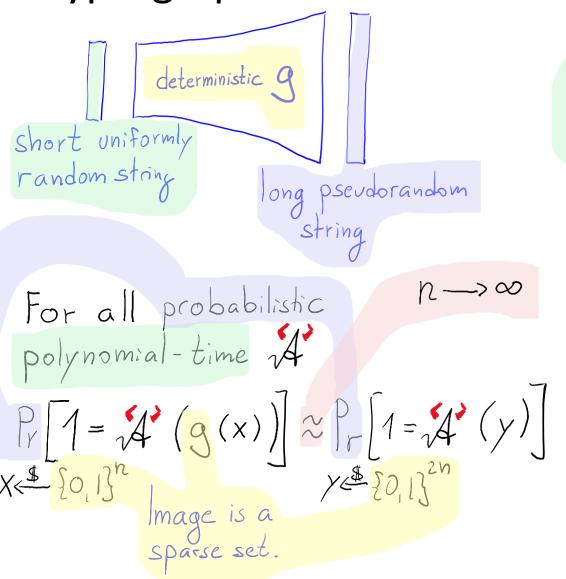
For all polynomial-time
$$\mathcal{A}$$
 $P_{r}[1=\mathcal{A}'(g(x))] \approx P_{r}[1=\mathcal{A}'(y)]$
 $x \in \{0,1\}^{n}$

Image is a sparse set.









Computational indistinguishability

g(x) & y

{0,1}

Obfuscation

same functionality hides structure

Program P(.)
$$\xrightarrow{\text{Obf}}$$
 P'(.)

Think of P(.) as a circuit with OR and NAND gates.

Or... ...think of P as a C-program and P' as an unreadable version of it...

even worse
than before.

...and we want to <u>prove</u> that the obfuscation is "secure".

Indistinguishability Obfuscation iO

Obf
$$(P; r) = P'$$
 randomized $P \stackrel{\text{fonc}}{=} P'$
Correctness: $\forall P, r, x : P(x) = P'(x)$, where $P = Obf(P; r)$
Security: $P_o \stackrel{\text{fonc}}{=} P_1 \implies Obf(P_o) \approx Obf(P_n)$

shorthand
for distribution

ret. Obf (Poir)

Indistinguishability Obfuscation iO

Obf
$$(P;r) = P'$$
 randomized $P \stackrel{\text{fonc}}{=} P'$
Correctness: $\forall P, r, x : P(x) = P'(x)$, where $P = Obf(P;r)$
Security: $P_o \stackrel{\text{fonc}}{=} P_o \implies Obf(P_o) \approx Obf(P_o)$

Indistinguishability Obfuscation iO

Obf
$$(P,r) = P'$$
 randomized $P \stackrel{\text{fonc}}{=} P'$
Correctness: $\forall P, r, x : P(x) = P'(x)$, where $P = Obf(P,r)$
Security: $P_o \stackrel{\text{fonc}}{=} P_1 \implies Obf(P_o) \approx Obf(P_1)$

$$\frac{P_{r}[1=\sqrt{4}(P_{o},P_{1},Obf(P_{o};r))]}{2!}$$

"I must admit that I was very sceptic of the applicability of indistinguishability obfuscation."

Oded Goldreich

$P=NP \Rightarrow iO$ (for program = circuit)

Construction: Obf(C):=

lexicographically first circuit that computes the same function as C.

Security: For all C_0 , C_1 that compute the same function: $Obf(C_0(.))$ and $Obf(C_1(.))$ are indistinguishable.

Equal!

Efficiency:

Indistinguishability Obfuscation iO

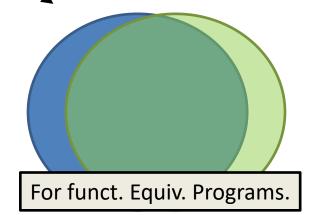
Obf
$$(P, r) = P'$$
 randomized $P \stackrel{\text{fonc}}{=} P'$
Correctness: $\forall P, r, x : P(x) = P'(x)$, where $P' = Obf(P, r)$
Security: $P_o \stackrel{\text{fonc}}{=} P_1 \implies Obf(P_o) \approx Obf(P_n)$

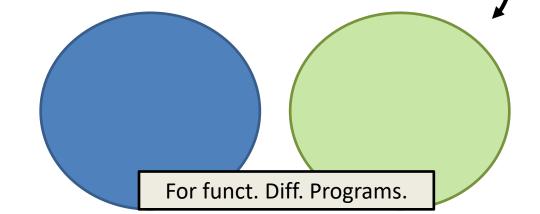
Statistically secure

Indistinguishability Obfuscation iO

$$\Rightarrow$$
 Obf(P_0) \approx O

These two distributions are close/equal (not just hard to distinguish).





$OWF \leftarrow NP \nsubseteq BPP + (stat. secure) iO$

Construction:

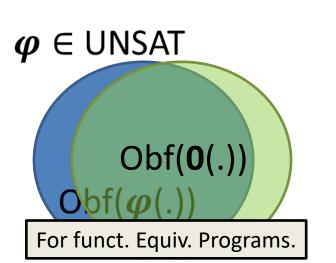
 $r \rightarrow Obf(\mathbf{0}(.);r)$

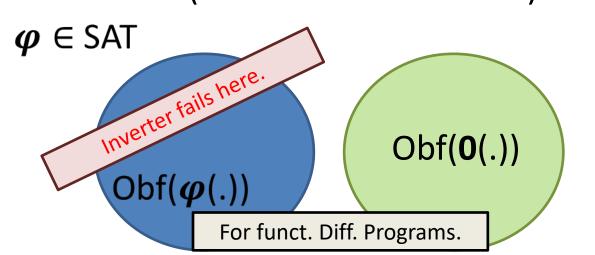
Constant zero function that maps all values to 0.

Randomness of the obfuscator

Why is this an OWF?

Assume towards contradiction that there exists a polytime inverter... Goal: distinguish satisfiable from unsatisfiable formulae (& reach contradiction)

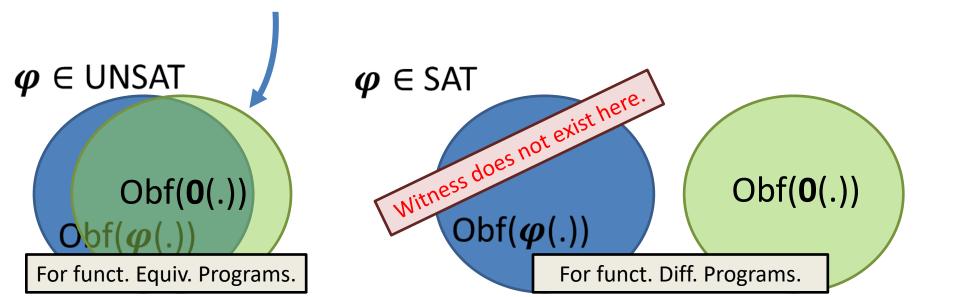




No iO with statistical security

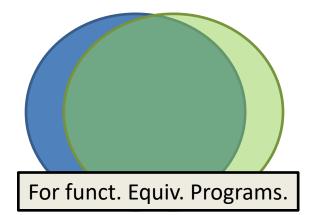
(under complexity assumptions)

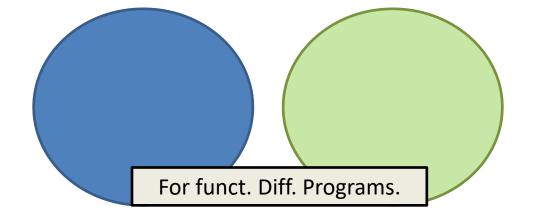
• $\exists siO \Rightarrow coNP \subseteq NP$



0-functions are important.

- **OWF:** $r \mapsto Obf(0;r)$
- Impossibility: Considers range of Obf(0;r)
- Lower bounds in Proof Complexity





Indistinguishability Obfuscation iO

Obf
$$(P, r) = P'$$
 randomized $P \stackrel{\text{fonc}}{=} P'$
Correctness: $\forall P, r, x : P(x) = P'(x)$, where $P' = Obf(P, r)$
Security: $P_o \stackrel{\text{fonc}}{=} P_i \implies Obf(P_o) \approx Obf(P_o)$

Indistinguishability Obfuscation iO

Obf
$$(P, r) = P'$$
 randomized $P \stackrel{\text{fonc}}{=} P'$
Correctness: $\forall P, r, x : P(x) = P'(x)$, where $P' = Obf(P, r)$
Security: $P_o \stackrel{\text{fonc}}{=} P_1 \implies Obf(P_o) \approx Obf(P_n)$

$$|P_{r}[1=\sqrt{4}(P_{o},P_{1},Obf(P_{o};r))|$$

$$-P_{r}[1=\sqrt{4}(P_{o},P_{1},Obf(P_{1};r))]| \leq \delta$$

AVOID

```
*m > n
```

Input: Expanding* circuit $C: \{0,1\}^n \rightarrow \{0,1\}^m$

Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

AVOID

*m > n

Input: Expanding* circuit $C: \{0,1\}^n \rightarrow \{0,1\}^m$

Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

Theorem [Ilango-Li-Williams]: det. polytime algo for AVOID + iO with small enough $\delta \Rightarrow \text{coNP} \subseteq \text{NP}$.

This is quite weak, because most $y \notin Im(C)$ still would not have a proof that they're outside Im(C).

2. A **deterministic** poly-time algo. for AVOID would be proof that a certain $y \in \{0,1\}^m$ is not $\notin Im(C)$.

AVOID

```
*m > n
```

Input: Expanding* circuit $C: \{0,1\}^n \rightarrow \{0,1\}^m$

Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

Theorem [Ilango-Li-Williams]: det. polytime algo for AVOID + iO with small enough $\delta \Rightarrow \text{coNP} \subseteq \text{NP}$.

Proof.

*m > n

Input: Expanding* circuit $C: \{0,1\}^n \to \{0,1\}^m$ Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

Theorem [Ilango-Li-Williams]: det. polytime algo for AVOID + iO with small enough $\delta \Rightarrow \text{coNP} \subseteq \text{NP}$.

Proof.

$$C[\psi, y](x) := \begin{cases} 0^m & \text{if } \psi(x) = 0 \\ y & \text{if } \psi(x) = 1 \end{cases}$$

obfuscator randomness

Witness for unsatisfiability of ψ :

(y,r) such that:

AVOID(C)=y, where C=Obf($C[\psi, y]$;r)

SAT $\in \{0,1\}^m$ formula

Input: Expanding* circuit $C: \{0,1\}^n \to \{0,1\}^m$ Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

Theorem [Ilango-Li-Williams]: det. polytime algo for AVOID + iO with small enough $\delta \Rightarrow \text{coNP} \subseteq \text{NP}$.

Proof.

$$C[\psi, y](x) := \begin{cases} 0^m & \text{if } \psi(x) = 0 \\ y & \text{if } \psi(x) = 1 \end{cases}$$

SAT $\in \{0,1\}^m$ formula

This branch is not used.

Witness for unsatisfiability of ψ : (y,r) such that:

AVOID(C)=y, where C=Obf($m{C}[m{\psi},m{y}]$;r)

correct iO

correctness of AVOID algo

Soundness. Witness (y,r) exists. $\Rightarrow y \notin Im(C)$

$$\Rightarrow y \notin Im(C[\psi, y])$$

 $\Rightarrow \psi$ unsatisfiable

Input: Expanding* circuit $C: \{0,1\}^n \to \{0,1\}^m$ Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

Theorem [Ilango-Li-Williams]: det. polytime algo for AVOID + iO with small enough $\delta \Rightarrow \text{coNP} \subseteq \text{NP}$.

Proof.

$$C[\psi,y](x):= egin{cases} 0^m & ext{if } \psi(x)=0 \ y & ext{if } \psi(x)=1 \end{cases}$$
 Witness for unsatisfiability of ψ : (y,r) such that: AVOID(C)=y, where C=Obf($C[\psi,y]$;r) formula

Completeness. ψ unsatisfiable. Find (y, r).

Problem. It could be that for every $y \in \{0,1\}^m$, it holds that for every $r, y \neq \text{AVOID(C)}$ for C=Obf($C[\psi, y]; r$)

circular dependency

*m > n

Input: Expanding* circuit $C: \{0,1\}^n \to \{0,1\}^m$ Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

Theorem [Ilango-Li-Williams]: det. polytime algo for AVOID + iO with small enough $\delta \Rightarrow \text{coNP} \subseteq \text{NP}$.

Proof.

formula

$$C[\psi,y](x):= \begin{cases} 0^m & \text{if } \psi(x)=0 \\ y & \text{if } \psi(x)=1 \end{cases}$$
 Witness for unsatisfiability of ψ : (y,r) such that: AVOID(C)=y, where C=Obf($C[\psi,y]$;r)

Completeness. ψ unsatisfiable. Find (y, r).

Problem. It could be that for every $y \in \{0,1\}^m$, it holds that for every $r, y \neq AVOID(C)$ for C=Obf($C[\psi, y]; r$)

Idea. Choose
$$y \in \{0,1\}^m$$
 such that
$$\Pr_{\mathbf{r}}[\mathbf{y} = \mathsf{AVOID}(\mathsf{C}) \mid \mathsf{C=Obf}(\mathbf{0};r)] \geq 2^{-m}$$
 no dependency \odot

*m > n

Input: Expanding* circuit $C: \{0,1\}^n \to \{0,1\}^m$ Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

Theorem [Ilango-Li-Williams]: det. polytime algo for AVOID + iO with small enough $\delta \Rightarrow \text{coNP} \subseteq \text{NP}$.

Proof.

formula

$$C[\psi, y](x) := \begin{cases} 0^m & \text{if } \psi(x) = 0 \\ y & \text{if } \psi(x) = 1 \end{cases}$$
 Witness for unsatisfiability of ψ : (y, r) such that: AVOID(C)=y, where C=Obf($C[\psi, y]$;r)

Completeness. ψ unsatisfiable. Find (y, r).

Idea. Choose $y \in \{0,1\}^m$ such that $\Pr[\mathbf{y} = \mathsf{AVOID}(\mathsf{C}) \mid \mathsf{C=Obf}(\mathbf{0}; r)] \ge 2^{-m}$

> Since AVOID needs to output strings in $\{0,1\}^m$, at least one of them needs to be chosen with prob. $\geq 2^{-m}$, so that probabilities add up to 1.

$$*m > n$$

Input: Expanding* circuit $C: \{0,1\}^n \to \{0,1\}^m$ Goal: Output $y \in \{0,1\}^m$ such that $y \notin Im(C)$.

Theorem [Ilango-Li-Williams]: det. polytime algo for AVOID + iO with small enough $\delta \Rightarrow \text{coNP} \subseteq \text{NP}$.

Proof.

$$C[\psi, y](x) := \begin{cases} 0^m & \text{if } \psi(x) = 0 \\ y & \text{if } \psi(x) = 1 \end{cases}$$
 Witness for unsatisfiability of ψ :
$$(y, r) \text{ such that:}$$

$$AVOID(C) = y, \text{ where C=Obf}(C[\psi, y]; r)$$

SAT $\in \{0,1\}^m$ formula

Completeness. ψ unsatisfiable. Find (y, r).

Both equivalent. Both all-zero circuit.

Idea. Choose $y \in \{0,1\}^m$ such that

$$\Pr_{r}[y = AVOID(C) \mid C = Obf(\mathbf{0}; r)] \ge 2^{-m}$$

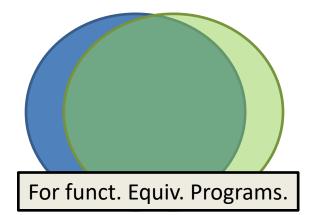
$$\Pr_{r}[y = AVOID(C) \mid C = Obf(C[\psi, y]; r)] > 0$$

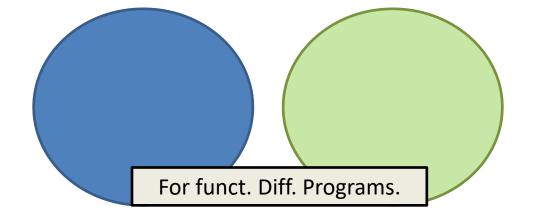
Choose r such that this holds.

if $\delta < 2^{-m}$

0-functions are important.

- **OWF**: $r \mapsto Obf(0;r)$
- Impossibility: Consider range of Obf(0;r)
- Lower bounds in Proof Complexity





0-functions are important.

• **OWF:** $r \mapsto Obf(0;r)$

- Impossibility: Consider range of Obf(0;r)
- Lower bounds in Proof Complexity

iO for P_0 , P_1 with short proof $\mathcal{P}_0 = \mathcal{P}_1$

Impossibility/OWF/Lower bounds: not anymore

Pure crypto applications: still seem to work

iO for Turing Machines: else only for circuits

Better Constructions? (or bounded-input Turing Machines)

Indistinguishability Obfuscation iO

Obf
$$(P, r) = P$$
 randomized $P \stackrel{\text{func}}{=} P'$
Correctness: $\forall P, r, x : P(x) = P'(x)$, where $P = Obf(P, r)$
Security: $P_o \stackrel{\text{func}}{=} P_1 \implies Obf(P_o) \approx Obf(P_n)$

$$\frac{P_{1}[1=\sqrt{4}(P_{0},P_{1},Obf(P_{0};r))]}{2P_{1}[1=\sqrt{4}(P_{0},P_{1},Obf(P_{1};r))]}$$

Thank you!