

How to Construct Indistinguishability Obfuscation? Part II: Lattice-based Obfuscation from NTRU and Equivocal LWE

Valerio Cini¹, Russell W. F. Lai², **Ivy K. Y. Woo²** in CRYPTO'25, ia.cr/2025/1129

Helsinki Algorithms & Theory Days, 29 August 2025

¹ Bocconi University, Italy

² Aalto University, Finland

iO. XiO

Recall from last talk: Indistinguishability Obfuscation

- ▶ Algorithms: Obf(Γ) $\to \tilde{\Gamma}$, Eval($\tilde{\Gamma}$, x) $\to y = \Gamma(x)$
- ▶ Security: For any $\Gamma_0 \equiv \Gamma_1$, Obf $(\Gamma_0) \approx_c$ Obf (Γ_1)
- ▶ Efficiency: $|\tilde{\Gamma}| = \text{poly}(|\Gamma|, \lambda)$
- Construction from "well-founded" assumptions by Jain, Lin, and Sahai [JLS21; JLS22], but not post-quantum secure

iO. XiO

Recall from last talk: EXponentially-efficient iO

- ▶ Relaxed efficiency: $|\tilde{\Gamma}| = |\text{truth table}|^{\alpha} \cdot \text{poly}(\lambda)$ for some constant $\alpha < 1$
- ▶ [LPST16]: XiO + Learning with Errors (LWE) assumption ⇒ iO because LWE ⇒ succinct FE [GKP+13]

Recall from last talk: EXponentially-efficient iO

- ▶ Relaxed efficiency: $|\tilde{\Gamma}| = |\text{truth table}|^{\alpha} \cdot \text{poly}(\lambda)$ for some constant $\alpha < 1$
- ► [LPST16]: XiO + Learning with Errors (LWE) assumption ⇒ iO because LWE ⇒ succinct FE [GKP+13]
- Many XiO attempts from lattices (post-quantum!), all based on heuristics or novel/highly-tailored assumptions; most assumptions cryptanalysed [HJL21; JLLS23]

Recall from last talk: EXponentially-efficient iO

- ► Relaxed efficiency: $|\tilde{\Gamma}| = |\text{truth table}|^{\alpha} \cdot \text{poly}(\lambda)$ for some constant $\alpha < 1$
- ► [LPST16]: XiO + Learning with Errors (LWE) assumption ⇒ iO because LWE ⇒ succinct FE [GKP+13]
- Many XiO attempts from lattices (post-quantum!), all based on heuristics or novel/highly-tailored assumptions; most assumptions cryptanalysed [HJL21; JLLS23]
- ▶ Our goal: Lattice-based XiO from self-contained + reasonable assumptions
- Starting point: XiO template of Brakerski, Döttling, Garg, and Malavolta [BDGM20]

1. Fully-homomorphic encryption (FHE)

2. Learning with Errors (LWE)-based encoding

- 1. Fully-homomorphic encryption (FHE)
 - From ciphertext ctxt_x encrypting x, can derive $\operatorname{ctxt}_{f(x)}$ for any function f
 - Secret key = vector s
 - ▶ Decrypt = evaluate low-norm linear function \mathbf{L}_{ctxt} in \mathbf{s} , then rounding:

$$\mathsf{Dec}(\cdot,\mathsf{ctxt}):\ \mathbf{s}\mapsto\mathsf{Dec}(\mathbf{s},\mathsf{ctxt})=\mathsf{round}(\mathbf{L}_{\mathsf{ctxt}}\cdot\mathbf{s})$$

2. Learning with Errors (LWE)-based encoding

- 1. Fully-homomorphic encryption (FHE)
 - From ciphertext ctxt_x encrypting x, can derive $\operatorname{ctxt}_{f(x)}$ for any function f
 - ► Secret key = vector **s**
 - ▶ Decrypt = evaluate low-norm linear function L_{ctxt} in s, then rounding:

$$\mathsf{Dec}(\cdot,\mathsf{ctxt}):\ \mathbf{s}\mapsto\mathsf{Dec}(\mathbf{s},\mathsf{ctxt})=\mathsf{round}(\mathbf{L}_{\mathsf{ctxt}}\cdot\mathbf{s})$$

2. Learning with Errors (LWE)-based encoding

(Decisional) Learning with Errors Assumption

Given random wide matrix $\mathbf{B} \leftarrow \mathbb{Z}_a^{n \times m}$,

$$\mathbf{c}^{\mathsf{T}} = \mathbf{r}^{\mathsf{T}} \mathbf{B} + \mathbf{e}^{\mathsf{T}} \mod q \qquad \approx_c \qquad \mathbf{c}^{\mathsf{T}} \leftarrow \$ \text{ uniform over } \mathbb{Z}_q^m$$

where **r** random LWE secret, **e** Gaussian (i.e. low-norm) error.

Note: LWE solution (**r**, **e**) unique w.h.p. given (**B**, **c**)

- 1. Fully-homomorphic encryption (FHE)
 - From ciphertext ctxt_x encrypting x, can derive $\operatorname{ctxt}_{f(x)}$ for any function f
 - Secret key = vector s
 - ▶ Decrypt = evaluate low-norm linear function \mathbf{L}_{ctxt} in \mathbf{s} , then rounding:

$$\mathsf{Dec}(\cdot,\mathsf{ctxt}):\ \mathbf{s}\mapsto\mathsf{Dec}(\mathbf{s},\mathsf{ctxt})=\mathsf{round}(\mathbf{L}_{\mathsf{ctxt}}\cdot\mathbf{s})$$

- 2. Learning with Errors (LWE)-based encoding
 - ▶ LWE assumption \Longrightarrow **C** = **RB** + **E** + Encode(**s**) mod $q \approx_c \$$

- 1. Fully-homomorphic encryption (FHE)
 - From ciphertext ctxt_x encrypting x, can derive ctxt_{f(x)} for any function f
 - Secret kev = vector s
 - Decrypt = evaluate low-norm linear function \mathbf{L}_{ctxt} in \mathbf{s} , then rounding:

$$\mathsf{Dec}(\cdot,\mathsf{ctxt}):\ \boldsymbol{\mathsf{s}} \mapsto \mathsf{Dec}(\boldsymbol{\mathsf{s}},\mathsf{ctxt}) = \mathsf{round}(\boldsymbol{\mathsf{L}}_{\mathsf{ctxt}} \cdot \boldsymbol{\mathsf{s}})$$

- 2. Learning with Errors (LWE)-based encoding
 - ▶ LWE assumption \Longrightarrow **C** = **RB** + **E** + Encode(**s**) mod $q \approx_c \$$
 - Encode = high-order-bit encoding \Longrightarrow LWE secret **R** allows to recover **s**:
 - $\mathbf{s} = \mathsf{Decode}(\mathbf{C} \mathbf{RB} \bmod q)$

- 1. Fully-homomorphic encryption (FHE)
 - From ciphertext ctxt_x encrypting x, can derive $\operatorname{ctxt}_{f(x)}$ for any function f
 - Secret key = vector s
 - ▶ Decrypt = evaluate low-norm linear function \mathbf{L}_{ctxt} in \mathbf{s} , then rounding:

$$\mathsf{Dec}(\cdot,\mathsf{ctxt}):\ \mathbf{s}\mapsto\mathsf{Dec}(\mathbf{s},\mathsf{ctxt})=\mathsf{round}(\mathbf{L}_{\mathsf{ctxt}}\cdot\mathbf{s})$$

- 2. Learning with Errors (LWE)-based encoding
 - ▶ LWE assumption \Longrightarrow **C** = **RB** + **E** + Encode(**s**) mod $q \approx_c \$$
 - ► Encode = high-order-bit encoding ⇒ LWE secret **R** allows to recover **s**:

$$\mathbf{s} = \mathsf{Decode}(\mathbf{C} - \mathbf{RB} \bmod q)$$
 $\mathbf{Ls} = \mathsf{Decode}(\mathbf{LC} - \mathbf{LRB} \bmod q)$

► Homomorphic for low-norm linear transforms, i.e. if **L** is low-norm then

$$LC \approx LRB + Encode(Ls) \mod q$$

Ivv Woo

- ightharpoonup Circuit Γ, truth table **Y**, size $|\mathbf{Y}| = h \cdot k$
- $ightharpoonup \operatorname{Obf}(\Gamma)
 ightarrow \tilde{\Gamma} = (\operatorname{ctxt}, \mathbf{B}, \mathbf{C}, \hat{\mathbf{R}})$
 - ► FHE ctxt encrypting Γ; secret key = s
 - ▶ B: random wide matrix
 - $ightharpoonup C = RB + E + Encode(s) \mod q$
 - Decryption hint R

- ightharpoonup Circuit Γ, truth table **Y**, size $|\mathbf{Y}| = h \cdot k$
- ightharpoonup Obf(Γ) ightharpoonup $\tilde{\Gamma} = (ctxt, \mathbf{B}, \mathbf{C}, \hat{\mathbf{R}})$
 - ► FHE ctxt encrypting Γ; secret key = s
 - B: random wide matrix
 - ightharpoonup $\mathbf{C} = \mathbf{RB} + \mathbf{E} + \mathsf{Encode}(\mathbf{s}) \bmod q$
 - Decryption hint R̂
 - For each input x, evaluate universal circuit U(·, x) on ctxt
 → Obtain FHE ctxt_{Γ(x)} encrypting Γ(x)
 - ▶ Evaluate linear part **L** of FHE.Dec(\cdot , (ctxt_{$\Gamma(x)$})_x) on **C**, obtain

$$\mathbf{LC} pprox \underbrace{\mathbf{LR}}_{\hat{\mathbf{B}}} \mathbf{B} + \mathsf{Encode}(\mathbf{Y}) \bmod q$$

▶ Eval($\tilde{\Gamma}$, x): Re-derive **LC** mod q from (ctxt, **C**), obtain Decode(**LC** − $\hat{\mathbf{R}}\mathbf{B}$ mod q) = **Y**

- ightharpoonup Circuit Γ, truth table **Y**, size $|\mathbf{Y}| = h \cdot k$
- $ightharpoonup \mathsf{Obf}(\Gamma)
 ightarrow \tilde{\Gamma} = (\mathsf{ctxt}, \mathbf{B}, \mathbf{C}, \hat{\mathbf{R}})$
 - ▶ FHE ctxt encrypting Γ ; secret key = **s**
 - ▶ B: random wide matrix
 - $ightharpoonup C = RB + E + Encode(s) \mod q$
 - ightharpoonup Decryption hint $\hat{\mathbf{R}} = \boxed{\mathbf{L}}$
- ► $|\mathsf{Encode}(\mathbf{Y})| = O(hk) > O(h) + O(k) = |\hat{\mathbf{R}}| + |\mathbf{B}| \Rightarrow \mathsf{Compression} \checkmark$

- ightharpoonup Circuit Γ, truth table **Y**, size $|\mathbf{Y}| = h \cdot k$
- $ightharpoonup \mathsf{Obf}(\Gamma)
 ightarrow \tilde{\Gamma} = (\mathsf{ctxt}, \mathbf{B}, \mathbf{C}, \hat{\mathbf{R}}) \, \mathbf{X}$
 - ▶ FHE ctxt encrypting Γ ; secret key = **s**
 - B: random wide matrix
 - $ightharpoonup C = RB + E + Encode(s) \mod q$
 - ▶ Decryption hint $\hat{\mathbf{R}} = \mathbf{L}$
- ► $|\mathsf{Encode}(\mathbf{Y})| = O(hk) > O(h) + O(k) = |\hat{\mathbf{R}}| + |\mathbf{B}| \Rightarrow \mathsf{Compression} \checkmark$
- Issues with R:
 - ▶ Give out $\hat{\mathbf{R}} \to \text{Trivial}$ attack, find **R** from $(\mathbf{L}, \hat{\mathbf{R}} = \mathbf{L}\mathbf{R})$, then recover **s** from $\mathbf{C} \times$

- ightharpoonup Circuit Γ, truth table **Y**, size $|\mathbf{Y}| = h \cdot k$
- ▶ Obf(Γ) $\rightarrow \tilde{\Gamma} = (\text{ctxt}, \mathbf{B}, \mathbf{C}, \text{mask}(\hat{\mathbf{R}}))$...?
 - FHE ctxt encrypting Γ; secret key = s
 - B: random wide matrix
 - $ightharpoonup C = RB + E + Encode(s) \mod q$
 - ▶ Decryption hint $\hat{\mathbf{R}} = \mathbf{L}$
- ► $|\mathsf{Encode}(\mathbf{Y})| = O(hk) > O(h) + O(k) = |\hat{\mathbf{R}}| + |\mathbf{B}| \Rightarrow \mathsf{Compression} \checkmark$
- Issues with R:
 - ▶ Give out $\hat{\mathbf{R}} \to \text{Trivial}$ attack, find **R** from (L, $\hat{\mathbf{R}} = \mathbf{L}\mathbf{R}$), then recover **s** from $\mathbf{C} \times$
 - ► Innovative ways to mask **Â** [BDGM20; WW21; GP21; DQV+21; BDGM22]
 - → Heuristic security/ Assumption cryptanalysed X [HJL21; JLLS23]

Idea to new decryption hint

Recap:

- ▶ Obf(Γ) $\rightarrow \tilde{\Gamma} = (\text{ctxt}, \mathbf{B}, \mathbf{C}, ?)$
 - ▶ FHE ctxt of Γ ; sk = **s**
 - **B**: wide matrix
 - ightharpoonup $\mathbf{C} = \mathbf{RB} + \mathbf{E} + \mathsf{Encode}(\mathbf{s}) \bmod q$
 - ightharpoonup $\hat{\mathbf{R}} = \mathbf{L}\mathbf{R} mod q$, thus $\mathbf{L}\mathbf{C} pprox \hat{\mathbf{R}}\mathbf{B} + \mathrm{Encode}(\mathbf{Y}) mod q$
- ▶ Eval($\tilde{\Gamma}$, x): Re-derive **LC** from (ctxt, **C**), obtain truth table Decode(**LC** − $\hat{\mathbf{R}}\mathbf{B} \mod q$) = **Y**
- ▶ Give out $\hat{\mathbf{R}} \to \text{Trivial}$ attack χ ; Give out mask($\hat{\mathbf{R}}$) $\to \text{No proof from plausible assumption } \chi$

Idea to new decryption hint

Recap:

- ▶ Obf(Γ) $\rightarrow \tilde{\Gamma} = (\text{ctxt}, \mathbf{B}, \mathbf{C}, ?)$
 - ▶ FHE ctxt of Γ ; sk = **s**
 - **B**: wide matrix
 - ightharpoonup $\mathbf{C} = \mathbf{RB} + \mathbf{E} + \mathsf{Encode}(\mathbf{s}) \bmod q$
 - $ightharpoonup \hat{\mathbf{R}} = \mathbf{L}\mathbf{R} mod q$, thus $\mathbf{L}\mathbf{C} pprox \hat{\mathbf{R}}\mathbf{B} + \mathrm{Encode}(\mathbf{Y}) mod q$
- ▶ Eval($\tilde{\Gamma}$, x): Re-derive **LC** from (ctxt, **C**), obtain truth table Decode(**LC** − $\hat{\mathbf{R}}\mathbf{B} \mod q$) = **Y**
- ▶ Give out $\hat{\mathbf{R}} \to \text{Trivial}$ attack χ ; Give out mask($\hat{\mathbf{R}}$) $\to \text{No proof from plausible assumption } \chi$
- Observation:
 - ► Correctness needs $\hat{\mathbf{R}}$ s.t. $\mathbf{LC} \approx \hat{\mathbf{R}}\mathbf{B} + \text{Encode}(\mathbf{Y}) \mod q$, unique w.h.p. if \mathbf{B} uniform

Recap:

- $ightharpoonup \operatorname{Obf}(\Gamma)
 ightarrow \tilde{\Gamma} = (\operatorname{ctxt}, \mathbf{B}, \mathbf{C}, \tilde{\mathbf{R}})$
 - ► FHE ctxt of Γ; sk = s
 - ▶ **B**: wide matrix sampled from special distribution
 - ightharpoonup $\mathbf{C} = \mathbf{RB} + \mathbf{E} + \mathsf{Encode}(\mathbf{s}) \bmod q$
 - $ightharpoonup \hat{\mathbf{R}} = \mathbf{L}\mathbf{R} mod q$, thus $\mathbf{L}\mathbf{C} pprox \hat{\mathbf{R}}\mathbf{B} + \mathrm{Encode}(\mathbf{Y}) mod q$
 - ► Sample random $\tilde{\mathbf{R}}$ s.t. $\mathbf{LC} \approx \tilde{\mathbf{R}}\mathbf{B} + \mathsf{Encode}(\mathbf{Y}) \bmod q$
- ightharpoonup Eval($\tilde{\Gamma}, x$): Re-derive **LC** from (ctxt, **C**), obtain truth table Decode(**LC** $\tilde{\mathbf{R}}\mathbf{B}$ mod q) = \mathbf{Y}
- ▶ Give out $\hat{\mathbf{R}} \to \text{Trivial}$ attack \checkmark ; Give out mask($\hat{\mathbf{R}}$) $\to \text{No proof from plausible assumption} <math>\checkmark$
- Observation:
 - ► Correctness needs $\hat{\mathbf{R}}$ s.t. $\mathbf{LC} \approx \hat{\mathbf{R}}\mathbf{B} + \text{Encode}(\mathbf{Y}) \mod q$, unique w.h.p. if \mathbf{B} uniform
- ▶ Idea: Let **B** s.t. there are many possible **R**, give out freshly sampled random one, e.g. **R**

Ivv Woo

Lattice point of view

- For LWE sample $\mathbf{c}^T = \mathbf{r}^T \mathbf{B} + \mathbf{e}^T \mod q$, LWE solution = point on primal lattice $\Lambda_q(\mathbf{B}) = \{\mathbf{x}^T : \exists \mathbf{r}, \ \mathbf{x}^T = \mathbf{r}^T \mathbf{B} \mod q\}$ close to \mathbf{c}^T
- ▶ Uniform $\mathbf{B} \iff \Lambda_q(\mathbf{B})$ is "sparse" w.h.p. \iff Unique lattice point close to \mathbf{c}^T

Figure: $\Lambda_q(\mathbf{B})$ for uniform **B**. One lattice point within ball = unique LWE solution.

Lattice point of view

- ► For LWE sample $\mathbf{c}^T = \mathbf{r}^T \mathbf{B} + \mathbf{e}^T \mod q$, LWE solution = point on primal lattice $\Lambda_q(\mathbf{B}) = \{\mathbf{x}^T : \exists \mathbf{r}, \ \mathbf{x}^T = \mathbf{r}^T \mathbf{B} \mod q\}$ close to \mathbf{c}^T
- ▶ Uniform $\mathbf{B} \iff \Lambda_q(\mathbf{B})$ is "sparse" w.h.p. \iff Unique lattice point close to \mathbf{c}^T
- ▶ Idea: **B** s.t. $\Lambda_q(\mathbf{B})$ has a "dense" sublattice

Figure: $\Lambda_q(\mathbf{B})$ for uniform **B**. One lattice point within ball = unique LWE solution.

Figure: Lattice with dense sublattice.

Equivocal Distribution \mathcal{E}

- ▶ Want: Given LWE sample $\mathbf{c}^{\mathsf{T}} = \mathbf{r}^{\mathsf{T}}\mathbf{B} + \mathbf{e}^{\mathsf{T}} \mod q$,
 - ightharpoonup \exists super-poly many LWE solutions $(\tilde{\mathbf{r}}, \tilde{\mathbf{e}})$ s.t. $\mathbf{c}^{\mathsf{T}} = \tilde{\mathbf{r}}^{\mathsf{T}} \mathbf{B} + \tilde{\mathbf{e}}^{\mathsf{T}} \mod q$
 - ▶ **B** looks random, even given decryption hint

Equivocal Distribution \mathcal{E}

- ▶ Want: Given LWE sample $\mathbf{c}^{\mathsf{T}} = \mathbf{r}^{\mathsf{T}}\mathbf{B} + \mathbf{e}^{\mathsf{T}} \mod q$,
 - lacktriangledown \exists super-poly many LWE solutions $(\tilde{\mathbf{r}}, \tilde{\mathbf{e}})$ s.t. $\mathbf{c}^\mathsf{T} = \tilde{\mathbf{r}}^\mathsf{T} \mathbf{B} + \tilde{\mathbf{e}}^\mathsf{T} \bmod q$
 - ▶ **B** looks random, even given decryption hint
- ▶ **B** \sim Equivocal distribution \mathcal{E} :
 - 1. Dense Sublattice: For any c,

- $\tilde{\mathbf{r}} :=$ "equivocation of \mathbf{c} "
- 2. **Pseudorandom with Leakage**: For any low-norm $(c_i)_i$,

$$\left\{ \mathbf{B}, (\mathbf{I}_i)_i \middle| \begin{array}{l} \mathbf{B} \leftarrow \$ \ \mathcal{E}; \quad \mathbf{x}_i \leftarrow \$ \ \$ \\ \tilde{\mathbf{r}}_i = \text{equivocation of } \mathbf{c}_i \\ \mathbf{I}_i = \mathbf{x}_i \cdot \tilde{\mathbf{r}}_i \text{ mod } q \quad \text{/} \text{ leakage} \end{array} \right\} \approx_c \left\{ \mathbf{B}, (\mathbf{I}_i)_i \middle| \begin{array}{l} \mathbf{B} \leftarrow \$ \ \$; \quad \mathbf{x}_i \leftarrow \$ \ \$ \\ \hat{\mathbf{R}} \leftarrow \$ \ \$ \\ \mathbf{I}_i^{\mathsf{T}} = \mathbf{x}_i^{\mathsf{T}} \cdot \hat{\mathbf{R}} \text{ mod } q \end{array} \right\}$$

Equivocal Distribution \mathcal{E}

- ▶ Want: Given LWE sample $\mathbf{c}^{\mathsf{T}} = \mathbf{r}^{\mathsf{T}} \mathbf{B} + \mathbf{e}^{\mathsf{T}} \mod q$,
 - ▶ \exists super-poly many LWE solutions $(\tilde{\mathbf{r}}, \tilde{\mathbf{e}})$ s.t. $\mathbf{c}^{\mathsf{T}} = \tilde{\mathbf{r}}^{\mathsf{T}} \mathbf{B} + \tilde{\mathbf{e}}^{\mathsf{T}} \mod q$
 - B looks random, even given decryption hint
- **B** \sim Equivocal distribution \mathcal{E} :
 - Dense Sublattice: For any c,

- $\tilde{\mathbf{r}} :=$ "equivocation of \mathbf{c} "
- 2. **Pseudorandom with Leakage**: For any low-norm $(c_i)_i$,

$$\left\{ \mathbf{B}, (\mathbf{I}_i)_i \middle| \begin{array}{l} \mathbf{B} \leftarrow \$ \; \mathcal{E}; \quad x_i \leftarrow \$ \; \$ \\ \tilde{\mathbf{r}}_i = \text{equivocation of } \mathbf{c}_i \\ \mathbf{I}_i = x_i \cdot \tilde{\mathbf{r}}_i \; \text{mod } q \quad I \; \text{leakage} \end{array} \right\} \approx_c \left\{ \mathbf{B}, (\mathbf{I}_i)_i \middle| \begin{array}{l} \mathbf{B} \leftarrow \$ \; \$; \quad \mathbf{x}_i \leftarrow \$ \; \$ \\ \hat{\mathbf{R}} \leftarrow \$ \; \$ \\ \mathbf{I}_i^\mathsf{T} = \mathbf{x}_i^\mathsf{T} \cdot \hat{\mathbf{R}} \; \text{mod } q \end{array} \right\}$$

Next: How to construct efficiently sampleable \mathcal{E} ?

Primal Lattice Trapdoor

- ► Two algorithms:
 - ▶ pTrapGen(1^{λ}) \rightarrow (**B**, trapdoor)
 - ▶ Equivocate(trapdoor, \mathbf{r} , $\mathbf{c}^T = \mathbf{r}^T \mathbf{B} + \mathbf{e}^T \mod q$) $\rightarrow \tilde{\mathbf{r}}$ s.t. $\mathbf{c}^T = \tilde{\mathbf{r}}^T \mathbf{B} + \tilde{\mathbf{e}}^T \mod q$

Primal Lattice Trapdoor

- Two algorithms:
 - ▶ pTrapGen(1^{λ}) → (**B**, trapdoor)
 - $\qquad \qquad \mathsf{Equivocate}(\mathsf{trapdoor},\ \mathbf{r},\ \mathbf{c}^\mathsf{T} = \mathbf{r}^\mathsf{T}\mathbf{B} + \mathbf{e}^\mathsf{T}\ \mathsf{mod}\ q) \to \tilde{\mathbf{r}}\ \ \mathsf{s.t.}\ \mathbf{c}^\mathsf{T} = \tilde{\mathbf{r}}^\mathsf{T}\mathbf{B} + \tilde{\mathbf{e}}^\mathsf{T}\ \mathsf{mod}\ q$
- ▶ I.e. sample lattice points from primal lattice

$$\Lambda_q(\mathbf{B}) = \left\{ \mathbf{x}^\mathsf{T} : \exists \mathbf{r}, \; \mathbf{x}^\mathsf{T} = \mathbf{r}^\mathsf{T} \mathbf{B} mod q
ight\}$$

Remark: Different from "standard" lattice trapdoor, which samples short vectors from kernel lattice $\Lambda_q^{\perp}(\mathbf{B}) = \{\mathbf{u} : \mathbf{B}\mathbf{u} = \mathbf{0} \bmod q\}$

Primal Lattice Trapdoor

- Two algorithms:
 - ▶ pTrapGen(1^{λ}) → (**B**, trapdoor)
 - ▶ Equivocate(trapdoor, \mathbf{r} , $\mathbf{c}^{\mathsf{T}} = \mathbf{r}^{\mathsf{T}}\mathbf{B} + \mathbf{e}^{\mathsf{T}} \bmod q$) $\rightarrow \tilde{\mathbf{r}}$ s.t. $\mathbf{c}^{\mathsf{T}} = \tilde{\mathbf{r}}^{\mathsf{T}}\mathbf{B} + \tilde{\mathbf{e}}^{\mathsf{T}} \bmod q$
- ► I.e. sample lattice points from primal lattice

$$\Lambda_q(\mathbf{B}) = \left\{ \mathbf{x}^\mathsf{T} : \exists \mathbf{r}, \; \mathbf{x}^\mathsf{T} = \mathbf{r}^\mathsf{T} \mathbf{B} \bmod q
ight\}$$

- ► Remark: Different from "standard" lattice trapdoor, which samples short vectors from kernel lattice $\Lambda_a^{\perp}(\mathbf{B}) = \{\mathbf{u} : \mathbf{B}\mathbf{u} = \mathbf{0} \mod q\}$
- Desired properties:
 - 1. **B** equivocal $(= \Lambda_q(\mathbf{B}))$ has dense sublattice + **B** Pseudorandom with Leakage)
 - 2. Equivocated LWE secret $\tilde{\mathbf{r}}$ satisfies
 - $\tilde{\mathbf{r}}^\mathsf{T}\mathbf{B} \bmod q \approx_s \mathsf{Gaussian} \mathsf{over} \Lambda_q(\mathbf{B}) \mathsf{centered} \mathsf{at} \mathbf{c} \bmod q$

NTRU

(Decisional) NTRU Assumption

For Gaussian vector \mathbf{f} , random invertible $d \in \mathbb{Z}_q^{\times}$,

$$\mathbf{b} = d^{-1} \cdot \mathbf{f} \bmod q$$

$$\approx_c$$

b \leftarrow \$ uniform over \mathbb{Z}_q^m

(Actually, replace \mathbb{Z} by some number ring \mathcal{R} .)

- ▶ \mathbf{f}^{T} : hidden short vector in $\Lambda_a(\mathbf{b}^{\mathsf{T}})$
 - $\mathbf{f}^{\mathsf{T}} = d \cdot \mathbf{b}^{\mathsf{T}} \bmod q$
 - **b** pseudorandom \Rightarrow Cannot tell if $\Lambda_{\sigma}(\mathbf{b}^{\mathsf{T}})$ has exceptionally short vectors

Figure: $\Lambda_a(\mathbf{b}^T)$ for NTRU $\mathbf{b} = d^{-1} \cdot \mathbf{f} \mod q$

Primal Lattice Trapdoor - Visualisation

▶ How $\Lambda_q(\mathbf{B})$ looks like:

 $(\mathbf{r}, \mathbf{e}), (\tilde{\mathbf{r}}, \tilde{\mathbf{e}})$ (and any lattice point within circle) are LWE solutions to \mathbf{c} :

$$\mathbf{c}^{\mathsf{T}} = \mathbf{r}^{\mathsf{T}} \mathbf{B} + \mathbf{e}^{\mathsf{T}} = \tilde{\mathbf{r}}^{\mathsf{T}} \mathbf{B} + \tilde{\mathbf{e}}^{\mathsf{T}} \mod q$$

► Secret short vector **f** as trapdoor, allows sampling along dense line(/hyperplane)

Primal Lattice Trapdoor from NTRU

$$\begin{array}{ll} (\textbf{B}, \mathsf{td}) \leftarrow \mathsf{pTrapGen}(\mathbf{1}^t, \mathbf{1}^k, q) \\ \mathbf{d} \leftarrow \$ \, \mathcal{R}_q^t : \mathbf{d}^\mathsf{T} \mathcal{R}_q^t = \mathcal{R}_q \\ \mathbf{f} \leftarrow \$ \, \mathcal{D}_{\mathcal{R}^k, \chi_f} : \mathbf{f}^\mathsf{T} \mathcal{R}^k = \mathcal{R} \\ \mathbf{B} \leftarrow \$ \, \mathcal{R}_q^{t \times k} : \mathbf{d}^\mathsf{T} \mathbf{B} = \mathbf{f}^\mathsf{T} \bmod q \\ \mathbf{return} \, (\mathbf{B}, \mathsf{td} = (\mathbf{B}, \mathbf{f}, \mathbf{d})) \end{array} \qquad \begin{array}{ll} \tilde{\mathbf{r}}^\mathsf{T} \leftarrow \mathsf{Equivocate}(\mathsf{td}, \mathbf{r}, \mathbf{c}, \mathbf{s}) \\ \mathbf{s} := s/\sigma(\tilde{\mathbf{f}}^\mathsf{T} \mathbf{f}) \quad / \mathsf{component\text{-wise inversion}} \\ \mathbf{e}_{\mathbb{L}} := \mathsf{Projection} \; \mathsf{of} \; \mathbf{c}^\mathsf{T} - \mathbf{r}^\mathsf{T} \mathbf{B} \; \mathsf{mod} \; q \; \mathsf{on} \; \mathsf{Span}(\mathcal{L}(\mathbf{f}^\mathsf{T})) \\ c \cdot \mathbf{1}_k := \mathbf{e}_{\mathbb{L}}/\mathbf{f} \quad / \; \mathsf{component\text{-wise inversion}} \\ p \leftarrow \$ \, \mathcal{D}_{\mathcal{R}, \mathbf{s}, c} \\ \mathbf{return} \; \tilde{\mathbf{r}}^\mathsf{T} := \mathbf{r}^\mathsf{T} + p \cdot \mathbf{d}^\mathsf{T} \; \mathsf{mod} \; q \end{array}$$

Primal Lattice Trapdoor from NTRU

- B equivocal:
 - ▶ **f** is short vector in $\Lambda_q(\mathbf{B}) \Longrightarrow$ Span of **f** is dense sublattice
 - ▶ **B** Pseudorandom with Leakage: proof under NTRU assumption
- ▶ $\tilde{\mathbf{r}}^{\mathsf{T}}\mathbf{B} \mod q \approx \mathsf{Gaussian}$ over $\Lambda_q(\mathbf{B})$ centered at $\mathbf{c} \mod q$: statistical proof

Putting together: XiO Construction

- ▶ Obf(Γ) $\rightarrow \tilde{\Gamma} = (ctxt, \mathbf{B}, \mathbf{C}, ?)$:
 - FHE ctxt of Γ; sk = s
 - ▶ B: random matrix
 - ightharpoonup $\mathbf{C} = \mathbf{RB} + \mathbf{E} + \mathsf{Encode}(\mathbf{s}) \bmod q$
 - $ightharpoonup \hat{\mathbf{R}} = \mathbf{L}\mathbf{R} mod q$, thus $\mathbf{L}\mathbf{C} pprox \hat{\mathbf{R}}\mathbf{B} + \mathrm{Encode}(\mathbf{Y}) mod q$

Putting together: XiO Construction

- ▶ Obf(Γ) $\rightarrow \tilde{\Gamma} = (ctxt, \mathbf{B}, \mathbf{C}, \tilde{\mathbf{R}})$:
 - FHE ctxt of Γ; sk = s
 - ▶ **B**: Equivocal, sampled by pTrapGen
 - ightharpoonup $\mathbf{C} = \mathbf{RB} + \mathbf{E} + \mathsf{Encode}(\mathbf{s}) \bmod q$
 - $ightharpoonup \hat{\mathbf{R}} = \mathbf{L}\mathbf{R} mod q$, thus $\mathbf{L}\mathbf{C} pprox \hat{\mathbf{R}}\mathbf{B} + \mathrm{Encode}(\mathbf{Y}) mod q$
 - ▶ Sample random $\tilde{\mathbf{R}}$ s.t. $\mathbf{LC} \approx \tilde{\mathbf{R}}\mathbf{B} + \text{Encode}(\mathbf{Y}) \mod q$ by Equivocate
- ▶ Eval($\tilde{\Gamma}$, x): Re-derive **LC** from (ctxt, **C**), obtain truth table Decode(**LC** − $\tilde{\mathbf{R}}\mathbf{B} \mod q$) = **Y**

Putting together: XiO Construction

- ▶ Obf(Γ) $\rightarrow \tilde{\Gamma} = (ctxt, \mathbf{B}, \mathbf{C}, \tilde{\mathbf{R}})$:
 - ▶ FHE ctxt of Γ ; sk = **s**
 - ▶ B: Equivocal, sampled by pTrapGen
 - ightharpoonup $\mathbf{C} = \mathbf{RB} + \mathbf{E} + \mathsf{Encode}(\mathbf{s}) \bmod q$
 - $ightharpoonup \hat{\mathbf{R}} = \mathbf{L}\mathbf{R} mod q$, thus $\mathbf{L}\mathbf{C} pprox \hat{\mathbf{R}}\mathbf{B} + \mathrm{Encode}(\mathbf{Y}) mod q$
 - ▶ Sample random $\tilde{\mathbf{R}}$ s.t. $\mathbf{LC} \approx \tilde{\mathbf{R}}\mathbf{B} + \text{Encode}(\mathbf{Y}) \mod q$ by Equivocate
- ▶ Eval($\tilde{\Gamma}$, x): Re-derive **LC** from (ctxt, **C**), obtain truth table Decode(**LC** − $\tilde{\mathbf{R}}\mathbf{B}$ mod q) = **Y**
- Security: Equivocal LWE assumption
 - ightharpoonup Based on equivocal distribution \mathcal{E}
 - ▶ Non-interactive ✓: independent of circuit to be ofuscated ✓: no random oracle ✓
 - ▶ Hint $\tilde{\mathbf{R}}\mathbf{B} \mod q \sim \text{Gaussian}$ with public description ✓
 - Detailed cryptanalysis on assumption in paper

Summary

- Equivocal Distribution & Primal Lattice Trapdoor
- ► Trapdoor construction from NTRU
- ▶ Above + Equivocal LWE assumption ⇒ XiO
- ▶ ia.cr/2025/1129

Ivy K. Y. Woo

Aalto University, Finland

ivy.woo@aalto.fi

ivyw.ooo

Thank You!

References I

- Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. "Candidate iO from Homomorphic Encryption Schemes". In: EUROCRYPT 2020. Part I. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12105. LNCS. Springer, Cham, May 2020, pp. 79-109. DOI: 10.1007/978-3-030-45721-1 4.
- Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. "Factoring and Pairings Are Not Necessary for IO: Circular-Secure LWE Suffices". In: ICALP 2022. Ed. by Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl, July 2022, 28:1-28:20. DOI: 10.4230/LIPICS.ICALP.2022.28.
- [DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. "Succinct LWE Sampling, Random Polynomials, and Obfuscation". In: TCC 2021, Part II. Ed. by Kobbi Nissim and Brent Waters, Vol. 13043, LNCS, Springer, Cham. Nov. 2021. pp. 256-287. DOI: 10.1007/978-3-030-90453-1_9.

References II

- [GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. "Reusable garbled circuits and succinct functional encryption". In: 45th ACM STOC. Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM Press, June 2013, pp. 555-564. DOI: 10.1145/2488608.2488678.
- Romain Gay and Rafael Pass, "Indistinguishability obfuscation from circular security", In: [GP21] 53rd ACM STOC. Ed. by Samir Khuller and Virginia Vassilevska Williams. ACM Press. June 2021, pp. 736–749. DOI: 10.1145/3406325.3451070.
- Samuel B. Hopkins, Aayush Jain, and Huijia Lin. "Counterexamples to New Circular [HJL21] Security Assumptions Underlying iO". In: CRYPTO 2021, Part II. Ed. by Tal Malkin and Chris Peikert. Vol. 12826. LNCS. Virtual Event: Springer, Cham, Aug. 2021, pp. 673-700. DOI: 10.1007/978-3-030-84245-1 23.
- Aavush Jain, Huijia Lin, Paul Lou, and Amit Sahai, "Polynomial-Time Cryptanalysis of the Subspace Flooding Assumption for Post-quantum iO". In: EUROCRYPT 2023, Part I. Ed. by Carmit Hazay and Martiin Stam. Vol. 14004, LNCS, Springer, Cham. Apr. 2023. pp. 205-235. DOI: 10.1007/978-3-031-30545-0 8.

References III

- [JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. "Indistinguishability obfuscation from well-founded assumptions". In: 53rd ACM STOC. Ed. by Samir Khuller and Virginia Vassilevska Williams. ACM Press, June 2021, pp. 60–73. DOI: 10.1145/3406325.3451093.
- Aayush Jain, Huijia Lin, and Amit Sahai. "Indistinguishability Obfuscation from LPN over \mathbb{F}_{p} , DLIN, and PRGs in NC^{0} ". In: EUROCRYPT 2022, Part I. Ed. by Orr Dunkelman and Stefan Dziembowski. Vol. 13275. LNCS. Springer, Cham, May 2022, pp. 670-699. DOI: 10.1007/978-3-031-06944-4 23.
- [LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. "Indistinguishability Obfuscation with Non-trivial Efficiency". In: PKC 2016. Part II. Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang. Vol. 9615. LNCS. Springer, Berlin, Heidelberg, Mar. **2016**, pp. **447–462**. DOI: 10.1007/978-3-662-49387-8 17.
- [WW21] Hoeteck Wee and Daniel Wichs. "Candidate Obfuscation via Oblivious LWE Sampling". In: EUROCRYPT 2021, Part III. Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12698, LNCS, Springer, Cham. Oct. 2021, pp. 127-156, DOI: 10.1007/978-3-030-77883-5 5.