Fast Percolation Centrality Approximation with Importance Sampling

Antonio Cruciani

Aalto University

Leonardo Pellegrina

Percolation Centrality

Given a graph G = (V, E) and a percolation states vector $x \in [0, 1]^n$ for all nodes v:

$$p(v) = \sum_{s
eq t} rac{\sigma_{st}(v)}{\sigma_{st}} \cdot rac{R(x_s - x_t)}{\sum_{u
eq v
eq w} R(x_u - x_w)} \in [0, 1]$$

• $\sigma_{st}(v)$ is the number of shortest paths between s and t passing through v

- σ_{st} overall number of shortest paths between s and t
- $\bullet \ \ R(x) = \max(0, x)$

Percolation Centrality

Given a graph G = (V, E) and a percolation states vector $x \in [0, 1]^n$ for all nodes v:

$$p(v) = \sum_{s
eq t} rac{\sigma_{st}(v)}{\sigma_{st}} \cdot \kappa(s,t,v) \in [0,1]$$

ullet $\sigma_{st}(v)$ is the number of shortest paths between s and t passing through v

- ullet σ_{st} overall number of shortest paths between s and t
- $\bullet \ \ R(x) = \max(0, x)$

Why Percolation Centrality?

Graph	V	$ m{E} $	$\mathcal{L}_{ ext{avg}}$	$\mathcal L$	ρ	Type
Guns	632659	5741968	0.347	$\{0, 1\}$	2.859	U
Combined	677753	6134836	0.246	$\{0, 1\}$	3.053	U
Youtube	152582	6268398	0.310	[0,1]	2.563	D

	Jaccar	Jaccard Similarity To			
Graph	10	50	100		
Guns	0.053	0.087	0.117		
Combined	0.0	0.031	0.015		
Youtube	0.429	0.369	0.504		

Efficient Computation

Problem: The exact computation of the Percolation Centrality requires $\mathcal{O}(n \cdot m)$ time!

Efficient Computation

Problem: The exact computation of the Percolation Centrality requires $\mathcal{O}(n \cdot m)$ time!

Idea: Let's compute a high-quality approximation using random sampling.

Goal: Given the accuracy parameter $\varepsilon \in (0,1]$ we want :

$$| ilde{p}(v) - p(v)| \leq arepsilon, \quad orall v \in V$$

Previous Works

 [de Lima et al,KDD'20] Estimating the Percolation Centrality of Large Networks through Pseudo-dimension Theory.

General Idea:

- 1) Pick two random nodes $s \neq t$ uniformly at random
- 2) Sample a shortest path between s and t uniformly at random
- 3) Update the score of each internal node v by $\kappa(s,t,v)$

Their results in a nutshell

They use uniform sampling (UNIF) to approximate

$$p^\star(v) = rac{1}{n(n-1)} \sum_{s
eq t} rac{\sigma_{st}(v)}{\sigma_{st}} \cdot \kappa(s,t,v)$$

Sample size of

$$\ell = rac{0.5}{arepsilon^2} \left(\lfloor \log(D) - 2
floor + 1 - \ln \delta
ight)$$

To achieve arepsilon-approximation with probability $\geq 1-\delta$

Their results in a nutshell

They use uniform sampling (UNIF) to approximate

$$p^{\star}(v) = rac{1}{n(n-1)} \sum_{s
eq t} rac{\sigma_{st}(v)}{\sigma_{st}} \cdot \kappa(s,t,v)$$

$$arepsilon \geq rac{1}{n(n-1)}$$

Is uninformative!

Better to directly set $\tilde{p}^{\star}(v) = 0, \ \forall v$

$$\varepsilon < \frac{1}{n(n-1)}$$

We need $\ell \in \Omega(n^4)$ samples!

Some Problems with UNIF

If
$$x_s \leq x_t$$
 then $\kappa(s,t,v) = 0$

Importance Sampling in a Nutshell

We want to approximate an expectation

$$\mu = \mathbb{E}_p\left[f(X)
ight] = \sum_x f(x) p(x)$$

Problem: Sampling from *p* may be inefficient

Idea: Sample from a proposal distribution q which emphasizes "important" regions.

$$\mathbb{E}_p\left[f(X)
ight] = \mathbb{E}_q\left[f(X)rac{p(X)}{q(X)}
ight]$$

The (maximum) Likelihood ratio

$$\hat{d} = \max_{x:q(x)>0} rac{p(x)}{q(x)}$$

Small (\approx 1): balanced weights \longrightarrow

Low variance, stable estimator

Large: extreme weights

High variance, unstable estimator

Our Importance Sampling Distribution (PercIS)

$$ilde{\kappa}: V imes V
ightarrow [0,1] \hspace{1cm} ilde{\kappa}(s,t) = rac{R(x_s - x_t)}{\sum_{u
eq w} R(x_u - x_w)}$$

 $\tilde{\kappa}$ is a valid distribution over all couple of nodes

For any shortest path au_{st} between s and t

$$q(au_{st}) = rac{ ilde{\kappa}(s,t)}{\sigma_{st}}$$

The ImportanceSampler

Idea: Once we sample s we need to sample a t such that $x_s>x_t$

1) Sample s with marginal

$$\Pr(s) = \sum_u ilde{\kappa}(s,u)$$

2) Sample t with

$$\Pr(t \mid s) = rac{ ilde{\kappa}(s,t)}{\sum_{u} ilde{\kappa}(s,u)}$$

 $\mathcal{O}(\log n)$ time per sample with a $\mathcal{O}(n\log n)$ preprocessing

Sample Complexity Analysis

Sample size of

$$\ell pprox rac{\hat{d}^2 \left(2\hat{v} + rac{2}{3}rac{arepsilon}{\hat{d}}
ight)}{arepsilon^2} \left(\ln\left(2\hat{
ho}/\hat{v}
ight) + \ln\left(1/\delta
ight)
ight)$$

To achieve arepsilon-approximation with probability $\geq 1-\delta$

- \hat{v} is an upper bound on the maximum variance of the PC
- avg_path_length $\leq \hat{\rho} \leq \hat{d} \cdot \text{avg_path_length}$

PercIS: an ε -approximation algorithm

PercIS in three lines

- Quickly observes the graph
- Estimates \hat{v} , $\hat{\rho}$ and computes the upper bound on the sample size ℓ
- Draws ℓ random samples and computes the approximation

$$ilde{p}(v) = rac{1}{\ell} \sum_{i=1}^\ell rac{\kappa(s,t,v)}{ ilde{\kappa}(s,t)} \mathbb{1}[v \in \mathtt{Int}(au^i_{st})]$$

$$\Delta = \min_v \max_{s
eq v
eq t} (x_s - x_t)$$

On all the tested instances it holds $\Delta \approx 1.0$

When $\Delta \in \Omega(1)$, the likelihood ratio \hat{d} of the importance sampling distribution q is $\hat{d} \in \mathcal{O}(1)$

There exists instances with $\Delta \in \Omega(1)$ where the likelihood ratio of the uniform distribution is $\Omega(n)$

There exists instances with $\Delta \in \Omega(1)$ where at least $\Omega(n^2)$ random samples are needed by UNIF, while $\mathcal{O}(n)$ random samples are sufficient for PercIS

Experimental Setting - Datasets

Graph	V	E	D	ρ	Type
P2P-Gnutella31	62586	147892	31	7.199	D
Cit-HepPh	34546	421534	49	5.901	D
Soc-Epinions	75879	508837	16	2.755	D
Soc-Slashdot	82168	870161	13	2.135	D
Web-Notredame	325729	1469679	93	9.265	D
Web-Google	875713	5105039	51	9.713	D
Musae-Facebook	22470	170823	15	2.974	U
Email-Enron	36692	183831	13	2.025	U
CA-AstroPH	18771	198050	14	2.194	U

All algorithms implemented in C++ (using OpenMP), and confidence parameter $\delta=0.05$

Experimental Setting - Percolation States

RS - Random Seeds

- Pick a fixed number of random nodes with state = 1, all others = 0.
- Models early infection / first spreaders

RSS - Random Seeds Spread

- Pick a $\log n$ seeds with state = 1, simulate diffusion
- Models infection spread

IC - Isolated Component

- Add a small component with mixed states (half 1, half 0).
- ullet Stress test: isolated outbreaks \rightarrow where UNIF usually fails.

UN - Uniform States

- Assign each node a random value in [0,1].
- Baseline comparison with prior work.

Maximum Error of UNIF using the PD-Bound

Sample size $\ell \in \mathcal{O}(\ln(D/\delta)/arepsilon^2)$ for $arepsilon \in [0.0005, 0.05]$

Maximum Error and Average Error

Sample size $\ell \in \{10^3, 5 \cdot 10^3, 10^4, 5 \cdot 10^4, 10^5, 5 \cdot 10^5, 10^6\}$

Sample Size with target ε

→ CA-AstroPH

→ Web-Notredame

- Email-Enron

→ Web-Google

→ Soc-Epinions

→ Soc-Slashdot

→ P2P-Gnutella31

Target ε is set to $(1/k) \cdot \max_{v \in V} p(v)$, for $k \in \{2, 4, 5, 10\}$

Running Times

Sample size $\ell \in \{10^3, 5 \cdot 10^3, 10^4, 5 \cdot 10^4, 10^5, 5 \cdot 10^5, 10^6\}$

Our new Data Dependent bound

$$arepsilon \in [0.0005, 0.05]$$

Conclusions

 We provide the first practical importance-sampling algorithm for PC.

New sample complexity analysis for the problem

 PercIS achieves up to 100× fewer samples, orders of magnitude faster than exact, robust across diverse settings

 Uniform sampling fails; PercIS makes percolation centrality scalable and practical.

Thank You

Upper bound on $\hat{ ho}$

Let $\mathcal{S} = \{ au_1, \dots, au_\ell\}$ be a sample of ℓ shortest paths drawn from q

Define the empirical variance as

$$\Lambda(\mathcal{S}) = rac{1}{\ell(\ell-1)} \sum_{1 \leq i < j \leq \ell} \left(| exttt{Int}(au_i)| - | exttt{Int}(au_j)|
ight)^2.$$

Then (via Empirical Bernstein Bound)

$$\hat{
ho} = \sum_{v \in V} ilde{p}(v) + \sqrt{rac{2\hat{d}\Lambda(\mathcal{S})\log(1/\delta)}{\ell}} + rac{7\hat{d}D\log(1/\delta)}{3\ell}$$

With probability $\geq 1 - \delta$ it holds $\sum_{v \in V} p(v) \leq \hat{
ho}$

Upper bound on $\hat{m{v}}$

Let $\mathcal{S} = \{ au_1, \dots, au_\ell\}$ be a sample of ℓ shortest paths drawn from q

Then (using self bounding functions)

$$\hat{v} = \hat{d}^2 \max_{v \in V} \left\{ ilde{p}(v) + \sqrt{rac{2 ilde{p}(v)\log(1/\delta)}{\ell}} + rac{\log(1/\delta)}{3\ell}
ight\}$$

With probability $\geq 1 - \delta$ it holds $\max_v \operatorname{Var}_q\left[ilde{p}(v)
ight] \leq \hat{v}$

The ImportanceSampler + Estimator

For
$$i=1,.....,\ell$$
 DO

- 1) Sample $s \neq t$ as showed
- 2) Perform Balanced Bidirectional BFS from s to t
- 3) Sample a shortest path au_{st}^i and put it in ${\cal S}$

$$\text{4) } \tilde{p}(v) = \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{\kappa(s,t,v)}{\tilde{\kappa}(s,t)} \mathbb{1}[v \in \mathtt{Int}(\tau_{st}^i)]$$

PercIS

Algorithm 1: PERCIS

```
Input: Graph G = (V, E), percolation states x_1, x_2, \ldots, x_n, \ \ell_1 \ge 1, \ \varepsilon, \delta \in (0, 1).
```

Output: ε -approximation of $\{p(v), v \in V\}$ with probability $\geq 1 - \delta$

- 1 D ← VERTEXDIAMUB(G);
- 2 $S \leftarrow \text{IMPORTANCESAMPLER}(G, \{x_v\}, \ell_1);$
- 3 forall $v \in V$ do $\tilde{p}(v) \leftarrow \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{\kappa(s,t,v)}{\tilde{\kappa}(s,t)} \mathbb{1} \left[v \in \tau_{st}^i \right]$

4
$$\hat{\rho} \leftarrow \sum_{v \in V} \tilde{p}(v) + \sqrt{\frac{2\hat{d}^2\Lambda(\mathcal{S})\log(4/\delta)}{\ell_1}} + \frac{7\hat{d}D\log(4/\delta)}{3\ell_1}$$
;

5
$$\hat{v} \leftarrow \hat{d}^2 \max_{v \in V} \left\{ \tilde{p}(v) + \sqrt{\frac{2\tilde{p}(v)\log(4/\delta)}{\ell_1}} + \frac{\log(4/\delta)}{3\ell_1} \right\};$$

6
$$\hat{x} \leftarrow 1/2 - \sqrt{1/4 - \min\{1/4, \hat{v}\}};$$

7
$$\ell \leftarrow \sup_{x \in (0,\hat{x})} \left\{ \frac{\ln\left(\frac{4\hat{\rho}}{x\delta}\right)}{g(x)h\left(\frac{\varepsilon}{g(x)\hat{d}}\right)} \right\};$$

- 8 $S \leftarrow \text{IMPORTANCESAMPLER}(G, \{x_v\}, \ell);$
- 9 forall $v \in V$ do $\tilde{p}(v) \leftarrow \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{\kappa(s,t,v)}{\tilde{\kappa}(s,t)} \mathbb{1} \left[v \in \tau_{st}^i \right]$
- 10 return $\{\tilde{p}(v), v \in V\}$

Observes the graph

Computes APX.

There exists instances with $\Delta \in \Omega(1)$ where the likelihood ratio of the uniform distribution is $\Omega(n)$

There exists instances with $\Delta \in \Omega(1)$ where at least $\Omega(n^2)$ random samples are needed by UNIF, while $\mathcal{O}(n)$ random samples are sufficient for PercIS

States *x*

Strongly Connected

There exists instances with $\Delta \in \Omega(1)$ where at least $\Omega(n^2)$ random samples are needed by UNIF, while $\mathcal{O}(n)$ random samples are sufficient for PercIS

Maximum Error and Average Error

Sample size $\ell \in \{10^3, 5 \cdot 10^3, 10^4, 5 \cdot 10^4, 10^5, 5 \cdot 10^5, 10^6\}$

Sample Size with target ε

Target arepsilon is set to $(1/k) \cdot \max_{v \in V} p(v)$, for $k \in \{2, 4, 5, 10\}$

Running Times

