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Percolation Centrality

p(v) = ⋅
s=t

∑
σst

σ (v)st ∈
R(x − x )∑u=v=w  u w

R(x − x )s t [0, 1]

Given a graph  and a percolation states vector 
 for all nodes :

G = (V ,E)
x ∈ [0, 1]n v

 is the number of shortest paths between  and 
passing through 

 

 overall number of  shortest paths between  and               
    

σ (v)st s t

v

σst s t

R(x) = max(0,x)
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Percolation Centrality

p(v) = ⋅
s=t

∑
σst

σ (v)st
κ(s, t, v) ∈ [0, 1]

Given a graph  and a percolation states vector 
 for all nodes :

G = (V ,E)
x ∈ [0, 1]n v

 is the number of shortest paths between  and 
passing through 

 

 overall number of  shortest paths between  and               
    

σ (v)st s t

v

σst s t

R(x) = max(0,x)
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Why Percolation Centrality ?
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Efficient Computation

Problem: The exact computation of the Percolation
Centrality requires  time!O(n ⋅m)
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Efficient Computation

Idea: Let's compute a high-quality approximation
using random sampling.

Problem: The exact computation of the Percolation
Centrality requires  time!O(n ⋅m)

(v) − p(v) ≤∣p~ ∣ ε, ∀v ∈ V

Goal: Given the accuracy parameter  we want :ε ∈ (0, 1]
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Previous Works

[de Lima et al,KDD'20] Estimating the Percolation
Centrality of Large Networks through Pseudo-dimension
Theory.

1) Pick two random nodes  uniformly at randoms = t

General Idea:

2)  Sample a shortest path between  and  uniformly at randoms t

3)  Update the score of each internal node  by v κ(s, t, v)
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Their results in a nutshell

p (v) =⋆ ⋅
n(n− 1)

1

s=t

∑
σst

σ (v)st
κ(s, t, v)

They use uniform sampling (UNIF) to approximate

Sample size of

ℓ = ⌊log(D) − 2⌋ + 1 − ln δ
ε2
0.5 ( )

To achieve -approximation with probability  ε ≥ 1 − δ
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Their results in a nutshell

p (v) =⋆ ⋅
n(n− 1)

1

s=t

∑
σst

σ (v)st
κ(s, t, v)

They use uniform sampling (UNIF) to approximate

ε ≥
n(n−1)
1 Is uninformative!

Better to directly set (v) =p~⋆ 0, ∀v

ε <
n(n−1)
1 We need  samples!ℓ ∈ Ω(n )4
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Some Problems with UNIF

1

0

2
1

0

States x
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If  then   x ≤s xt κ(s, t, v) = 0



Importance Sampling in a Nutshell

We want to approximate an expectation

μ = E f(X) =p [ ] f(x)p(x)
x

∑

Problem: Sampling from  may be inefficientp

Idea: Sample from a proposal distribution   which emphasizes
''important'' regions.

q

 E f(X) =p [ ] E f(X)q [
q(X)
p(X)]

12



The (maximum) Likelihood ratio

 Small ( ): balanced weights≈ 1

  =d̂
x:q(x)>0
max

q(x)
p(x)

 Large:  extreme weights 

Low variance, stable
estimator

High variance, unstable
estimator
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Our Importance Sampling Distribution (PercIS)

q(τ ) =st
σst

(s, t)κ~

For any shortest path  between  and τst s t

 is a valid distribution over all couple of nodesκ~

(s, t) =κ~
R(x − x )∑u=w u w

R(x − x )s t
:κ~ V × V → [0, 1]
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The ImportanceSampler

Idea: Once we sample  we need to sample a  such that s t x >s xt

Pr(s) = (s,u)
u

∑ κ~

2) Sample  with t

1) Sample  with marginals

Pr(t ∣ s) =
(s,u)∑u κ
~
(s, t)κ~

   time per sample with a 
preprocessing

O(log n) O(n log n)
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Sample Complexity Analysis

ℓ ≈ ln 2 / + ln 1/δ
ε2

2 +d̂2 ( v̂ 3
2
d̂

ε)
( ( ρ̂ v̂) ( ))

Sample size of

To achieve -approximation with probability  ε ≥ 1 − δ

avg_path_length ≤ ≤ρ̂ ⋅d̂ avg_path_length

 is an upper bound on the maximum variance of the PCv̂
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PercIS: an -approximation algorithmε

PercIS in three lines
Quickly observes the graph
Estimates ,  and computes the upper bound on the sample
size 
Draws  random samples and computes the approximation

v̂ ρ̂

ℓ
ℓ

(v) =p~ 1[v ∈
ℓ
1

i=1

∑
ℓ

(s, t)κ~
κ(s, t, v)

Int(τ )]st
i
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PercIS vs UNIF

Δ = (x −
v
min

s=v=t 
max s x )t

When , the likelihood ratio  of
the importance sampling distribution  is 

 

Δ ∈ Ω(1) d̂

q

∈d̂ O(1)

On all the tested instances it holds Δ ≈ 1.0
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PercIS vs UNIF

There exists instances with  where
the likelihood ratio of the uniform

distribution is 

Δ ∈ Ω(1)

Ω(n)

There exists instances with  where
at least  random samples are needed
by UNIF, while  random samples are

sufficient for PercIS

Δ ∈ Ω(1)
Ω(n )2

O(n)
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Experimental Setting - Datasets

All algorithms implemented in C++ (using OpenMP), and
confidence parameter δ = 0.05
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Experimental Setting - Percolation States

RS - Random Seeds

RSS - Random Seeds Spread

IC - Isolated Component

UN - Uniform States

Pick a fixed number of random nodes with state = 1, all others = 0.
Models early infection / first spreaders

Pick a  seeds with state = 1, simulate diffusion
Models infection spread

log n

Add a small component with mixed states (half 1, half 0).
Stress test: isolated outbreaks → where UNIF usually fails.

Assign each node a random value in [0,1].
Baseline comparison with prior work. 21



Maximum Error of UNIF using the PD-Bound

Sample size  for ℓ ∈ O(ln(D/δ)/ε )2 ε ∈ [0.0005, 0.05]
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Maximum Error and Average Error

Sample size ℓ ∈ {10 , 5 ⋅3 10 , 10 , 5 ⋅3 4 10 , 10 , 5 ⋅4 5 10 , 10 }5 6
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Sample Size with target ε

Target  is set to , for ε (1/k) ⋅ max p(v)v∈V k ∈ {2, 4, 5, 10}
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Running Times

Sample size ℓ ∈ {10 , 5 ⋅3 10 , 10 , 5 ⋅3 4 10 , 10 , 5 ⋅4 5 10 , 10 }5 6
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Our new Data Dependent bound

 ε ∈ [0.0005, 0.05]
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Conclusions

We provide the first practical importance-sampling algorithm
for PC.

New sample complexity analysis for the problem

PercIS achieves up to 100× fewer samples, orders of
magnitude faster than exact, robust across diverse settings

Uniform sampling fails; PercIS makes percolation centrality
scalable and practical.
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Thank You
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Upper bound on ρ̂

Λ(S) = ∣Int(τ )∣ − ∣Int(τ )∣
ℓ(ℓ − 1)
1

1≤i<j≤ℓ

∑ ( i j )
2

=ρ̂ (v) +
v∈V

∑ p~ +
ℓ

2 Λ(S) log(1/δ)d̂

3ℓ
7 D log(1/δ)d̂

Let  be a sample of  shortest paths drawn from S = {τ ,… , τ }1 ℓ ℓ q

Define the empirical variance as

Then (via Empirical Bernstein Bound)

With probability  it holds ≥ 1 − δ p(v) ≤∑v∈V ρ̂
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Upper bound on v̂

Let  be a sample of  shortest paths drawn from S = {τ ,… , τ }1 ℓ ℓ q

=v̂ (v) + +d̂2
v∈V
max{p~

ℓ
2 (v) log(1/δ)p~

3ℓ
log(1/δ)}

With probability  it holds ≥ 1 − δ max Var (v) ≤v q [p~ ] v̂

Then (using self bounding functions)
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The ImportanceSampler + Estimator

1) Sample  as showeds = t

2) Perform Balanced Bidirectional BFS  from  to s t

3) Sample a shortest path  and put it in τst
i S

4) (v) =p~ 1[v ∈
ℓ
1

i=1

∑
ℓ

(s, t)κ~
κ(s, t, v)

Int(τ )]st
i

For  DOi = 1, ......, ℓ
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PercIS

Observes the graph

Computes APX.
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PercIS vs UNIF

There exists instances with  where
the likelihood ratio of the uniform

distribution is 

Δ ∈ Ω(1)

Ω(n)

1

0

2
1

0

States x
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PercIS vs UNIF

There exists instances with  where
at least  random samples are needed
by UNIF, while  random samples are

sufficient for PercIS

Δ ∈ Ω(1)
Ω(n )2

O(n)

0

States x

34

Strongly Connected



PercIS vs UNIF

There exists instances with  where
at least  random samples are needed
by UNIF, while  random samples are

sufficient for PercIS

Δ ∈ Ω(1)
Ω(n )2

O(n)

1

0

2
1

0

States x
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Strongly Connected



Maximum Error and Average Error

Sample size ℓ ∈ {10 , 5 ⋅3 10 , 10 , 5 ⋅3 4 10 , 10 , 5 ⋅4 5 10 , 10 }5 6
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Sample Size with target ε

Target  is set to , for ε (1/k) ⋅ max p(v)v∈V k ∈ {2, 4, 5, 10}
37



Running Times
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