Jukka Suomela Aalto University

Distributed Quantum Advantage

What tasks can be solved faster in large computer networks with the help of quantum computation and communication?

One computer: Shor, Grover, etc. Computer network: ???

Local computation

Less work done between communication steps

One quantum computer more powerful than one classical computer

Communication bandwidth

Less work done during communication steps

Sending one qubit more useful than sending one bit

Communication rounds

Smaller number of communication steps

Sending *some* qubits more useful than sending *any* number of bits!

Local computation

Less work done between communication steps

One quantum computer more powerful than one classical computer

Traditional quantum computing research → someone else's problem

Communication bandwidth

Less work done during communication steps

Sending one qubit more useful than sending one bit

Communication rounds

Smaller number of communication steps

Sending *some* qubits more useful than sending *any* number of bits!

Local computation

Less work done between communication steps

One quantum computer more powerful than one classical computer

Traditional quantum computing research → someone else's problem

Communication bandwidth

Less work done during communication steps

Sending one qubit more useful than sending one bit

Quantum-CONGEST

Communication rounds

Smaller number of communication steps

Sending *some* qubits more useful than sending *any* number of bits!

CONGEST

- Limited communication bandwidth
- **Classical CONGEST:** in each round you can send $O(\log n)$ bits to each neighbor
- Quantum-CONGEST: in each round you can send $O(\log n)$ qubits to each neighbor

Quantum-CONGEST

- Key tool for algorithm design: distributed Grover search
- Example: computing diameter
 - quadratic improvement in running time
 - in these tasks quantum-LOCAL \approx classical LOCAL with $n^{1/2}$ bandwidth
- Benefits beyond bandwidth savings??

Local computation

Less work done between communication steps

One quantum computer more powerful than one classical computer

Traditional quantum computing research → someone else's problem

Communication bandwidth

Less work done during communication steps

Sending one qubit more useful than sending one bit

Quantum-CONGEST

Communication rounds

Smaller number of communication steps

Sending *some* qubits more useful than sending *any* number of bits!

Quantum-LOCAL

- Quantum known to help with some problems
 - very significantly, e.g., constant vs. linear
- All known examples are artificial problems
 - engineered to be quantum-easy
 - nontrivial: show that they are classically hard

- Key tool for problem engineering: quantum games
 - games where players can win without communication if they share qubits before the game starts and inputs are revealed

Symmetry-breaking problems (e.g. 3-coloring cycles)

- all are quantum-easy?
- some are quantum-easy?
- none are quantum-easy?

Symmetry-breaking problems

(e.g. **3-coloring cycles**)

- all are quantum-easy?
- some are quantum easy?
- none are quantum-easy?

My conjecture, new proof techniques needed

Local coordination problems (e.g. maximal matching)

- all are quantum-easy?
- some are quantum-easy?
- none are quantum-easy?

Local coordination problems

(e.g. *maximal matching*)

- all are quantum easy?
- some are quantum-easy
- none are quantum easy?

But which?
Major open
question, new
techniques
needed

Local computation

Less work done between communication steps

One quantum computer more powerful than one classical computer

Traditional quantum computing research

Shor, Grover...

Communication bandwidth

Less work done during communication steps

Sending one qubit more useful than sending one bit

Quantum-CONGEST

Distributed Grover, quadratic improvements

Communication rounds

Smaller number of communication steps

Sending *some* qubits more useful than sending *any* number of bits!

Quantum-LOCAL

Quantum games, big improvements, but **so far only some artificial problems**