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Introduction

Cryptographers need computational assumptions

Cryptography is like a religion.
Minimum faith required:

symmetric-key crypto One-way functions (OWF)
public-key crypto OWF over algebraic structure, e.g. RSA, discrete logarithm (DLOG), SIS, LWE
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Introduction

Cryptographers need computational assumptions

Cryptography is like a religion.

Minimum faith required:

symmetric-key crypto One-way functions (OWF)
public-key crypto OWF over algebraic structure, e.g. RSA, discrete logarithm (DLOG), SIS, LWE

(Relatively) unstructured assumptions Structured and/or hinted assumptions
e.g. RSA, DLOG, SIS, LWE e.g. Strong RSA, One-More DLOG,
Vanishing SIS, Evasive LWE
4 4
Basic cryptographic primitives Advanced properties
e.g. encryption, signatures, etc. e.g. succinctness, quasi-linear time, etc.
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Introduction

(Euclidean) Lattices
For basis B € R™¥ with k < n, the lattice spanned by B is

L£(B)={Bz:z€Z} CR"

I i . ¢ 6.00
to. . to. . 2=0.00
. ST 588 S e
. . . y=0.00 . x=0.00
X .o . S
An n = 2 dimensional example An n = 3 dimensional example
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Introduction

(Euclidean) Lattices
For basis B € R™¥ with k < n, the lattice spanned by B is

L£(B)={Bz:z€Z} CR"

I i . ¢ 6.00
to. . to. . 2=0.00
. ° . _'65 geﬂ . 6.00
. . . y=0.00 . x=0.00
: .o . S
An n = 2 dimensional example An n = 3 dimensional example

General believe: Arithmetic problems = easy, Geometric problems = hard
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Introduction

Lattice-based cryptography

Lattice-based crypto = crypto based on hardness of lattice problems

Why lattice-based crypto?

T Conjectured post-quantum security

T Security (of most constructions) based on hardness of worst-case lattice problems
i.e. there exist worst-case to average-case reductions between hard problems

T Enabling unique functionalities, e.g. fully homomorphic encryption
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Introduction

Goal of this talk

T Overview of old and new lattice-based assumptions
T Highlight gaps from foundational perspective
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Standard Assumptions

Basics: Successive minima

Successive minima A{(£), ..., An(£)

)\,-(E) = Radius of smallest n-dim ball containing / linearly independent lattice vectors.
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Standard Assumptions

Worst-case problems: SIVP, GapSVP

SIVP,,: Shortest Independent Vector Problem

Given £ C R”, find linearly independent {z4, . ..,2,} C L such that max;||z;|| < v - Ay(L).
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Standard Assumptions

Worst-case problems: SIVP, GapSVP

SIVP,,: Shortest Independent Vector Problem

Given £ C R”, find linearly independent {z4, . ..,2,} C L such that max;||z;|| < v - Ay(L).

GapSVP.,: Decision Shortest Vector Problem

Given lattice £ C R" and areal d > 0, decide whether \{(£) < dor A{(£) > 7 - d.
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Standard Assumptions

Worst-case problems: SIVP, GapSVP

SIVP,,: Shortest Independent Vector Problem

Given £ C R”, find linearly independent {z4, . ..,2,} C L such that max;||z;|| < v - Ay(L).

GapSVP.,: Decision Shortest Vector Problem

Given lattice £ C R" and areal d > 0, decide whether \{(£) < dor A{(£) > 7 - d.

The function v = 'y(n) is the approximation factor. It plays a significant role in hardness.
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Standard Assumptions

Worst-case problems: Sliding scale of approximation factors

Known hardness results for GapSVP.,:

1 LI 1
' " !
' 0(1) 'n.l/ loglogn | | \/n/ logn \/ﬁ n 'n,3/2 (resp. nZ) on loglogn/logn !
' " .
i mo poly-time alg. no poly-timealg. 1 in coAM in coNP pif{hacd, if hard quantumly in P 0
' if NP ¢ RP if NP ¢ RSUBEXP , ; bIS 1;lplap.rd; e T :
' ' in N

LWE is hard [l
' "

'

H Hardness i Hardness Barriers Cryptography Algorithms H
L} LI 1
-

Figure from “The Complexity of the Shortest Vector Problem” by Huck Bennett, 2023.
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Standard Assumptions

Average-case problems: SIS, LWE

Letn < m < poly(n), B < q < 290",

SISy, m,q,5: Short Integer Solution [Ajtai96]

Given uniformly random A <—s Zg*™, find x € Z™ with Ax = 0 mod gand 0 < [|x|| < §.
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Standard Assumptions

Average-case problems: SIS, LWE

Letn < m < poly(n), B < q < 290",

SISy, m,q,5: Short Integer Solution [Ajtai96]

Given uniformly random A <—s Zg*™, find x € Z™ with Ax = 0 mod gand 0 < [|x|| < §.

LWE, m,q,x: Learning with Errors [Regev05]

Given uniformly random A < Zg*™ and sample b € Z, decide whether b is uniformly random
orb" ~ sTA mod g for uniformly random s < Z7.
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Standard Assumptions

Average-case problems: SIS, LWE

Letn < m < poly(n), B < q < 290",

SISy, m,q,5: Short Integer Solution [Ajtai96]

Given uniformly random A <—s Zg*™, find x € Z™ with Ax = 0 mod gand 0 < [|x|| < §.

LWE, m,q,x: Learning with Errors [Regev05]

Given uniformly random A < Zg*™ and sample b € Z, decide whether b is uniformly random
orb" ~ sTA mod g for uniformly random s < Z7.

T Without norm constraint or noise == linear algebra
T Geometry seems to make the problems much harder!
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Standard Assumptions

Reductions

Hardness of SIS and LWE are relatively well understood.
SIVP 7/ SIS

N
N I
S |
<
N I
N
N

GapSVP — LWE

T A — B: Classical reduction from A to B (Dotted = Trivial)
T A --» B: Quantum reduction from Ato B
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Structured and Hinted Assumptions

Structured and/or hinted SIS and LWE
Recall: Stronger assumptions == Fancier functionalities (generally)
How to make stronger variants of SIS and LWE, i.e. add adjectives?

T Additional structure, e.g.:

I matrices and vectors over number rings R instead of Z
I structured matrix A, e.g. Vandermonde
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Structured and Hinted Assumptions

Structured and/or hinted SIS and LWE
Recall: Stronger assumptions == Fancier functionalities (generally)
How to make stronger variants of SIS and LWE, i.e. add adjectives?

T Additional structure, e.g.:

I matrices and vectors over number rings R instead of Z
I structured matrix A, e.g. Vandermonde

i Give hints, e.g. for given y, short vector x such that Ax = y mod g and ||x|| < /3, denoted
—1
X <$Ag (v)

We say “x is a preimage of y w.r.t. A”.
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Structured and Hinted Assumptions

Structured and/or hinted SIS and LWE
Recall: Stronger assumptions == Fancier functionalities (generally)
How to make stronger variants of SIS and LWE, i.e. add adjectives?

T Additional structure, e.g.:

I matrices and vectors over number rings R instead of Z
I structured matrix A, e.g. Vandermonde

i Give hints, e.g. for given y, short vector x such that Ax = y mod g and ||x|| < /3, denoted
—1
X <sA; (y)
We say “x is a preimage of y w.r.t. A”.
What to research about these assumptions?

T Applications to cryptographic constructions
T Cryptanalysis, i.e. find algorithms
T Reductions
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Structured and Hinted Assumptions

Ring/module SIS and LWE - “Structure from the inside”

Typical setting: Let R = Z[(] where ¢ € C is a root of unity.
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Structured and Hinted Assumptions

Ring/module SIS and LWE - “Structure from the inside”

Typical setting: Let R = Z[(] where ¢ € C is a root of unity.

SISR n,m.q,5: Ring/Module Short Integer Solution [Peikert-Rosen06, Lyubashevsky-Micciancio06]

Given uniformly random A <—s Rp*™, find x € R with Ax = 0 mod gand 0 < |[x|| < 3.
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Structured and Hinted Assumptions

Ring/module SIS and LWE - “Structure from the inside”

Typical setting: Let R = Z[(] where ¢ € C is a root of unity.

SISR n,m.q,5: Ring/Module Short Integer Solution [Peikert-Rosen06, Lyubashevsky-Micciancio06]

Given uniformly random A <—s Rp*™, find x € R with Ax = 0 mod gand 0 < |[x|| < 3.

LWER n,m,q,x* Ring/Module Learning with Errors [Lyubashevsky-Peikert-Regev10]

Given uniformly random A < R¢™™ and sample b € R, decide whether b is uniformly random
orb" ~ s"A mod g for uniformly random s < R.

On the Expanding Zoo of Lattice Assumptions Russell W. F. Lai 11/17



Structured and Hinted Assumptions

Ring/module SIS and LWE - “Structure from the inside”

Typical setting: Let R = Z[(] where ¢ € C is a root of unity.

SISR n,m.q,5: Ring/Module Short Integer Solution [Peikert-Rosen06, Lyubashevsky-Micciancio06]

Given uniformly random A <—s Rp*™, find x € R with Ax = 0 mod gand 0 < |[x|| < 3.

LWER n,m,q,x* Ring/Module Learning with Errors [Lyubashevsky-Peikert-Regev10]

Given uniformly random A < R¢™™ and sample b € R, decide whether b is uniformly random
orb" ~ s"A mod g for uniformly random s < R.

t 'R = 7Z = Standard SIS and LWE
T n=1:"ring” setting
T n > 1: “module” setting
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Structured and Hinted Assumptions

Reductions over rings and modules

Most existing reductions over Z generalise to ring/module settings.

SIVPR 7—— SISg

~ Al
~
N I
> l
N I
~
Mo

GapSVPp LWER

T A — B: Classical reduction from A to B (Dotted = Trivial)
T A --» B: Quantum reduction from Ato B
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Structured and Hinted Assumptions

Reductions over rings and modules

Most existing reductions over Z generalise to ring/module settings.

SIVPR 7— SIS

N Al
~
N I
> l
N I
~
Mo

GapSVPp LWER

T A — B: Classical reduction from A to B (Dotted = Trivial)
T A --» B: Quantum reduction from Ato B

Issues:

T Classical reduction from GapSVPz, to LWER missing (literature: restricted parameters, omitted)
T GapSVPp, easy in ring setting, i.e. n = 1
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Structured and Hinted Assumptions

Polynomials and rational functions — “Structure from the outside”

Vanishing SIS [Cini-L-Malavolta23]

SIS but matrix A consists of rational functions evaluations at random points, e.g. Vandermonde

1 a ar!
A= : :
1 a, aﬁf1

In other words, given random points ay, . . ., ap, find degree-m polynomial with short coefficients
which vanish at these points.
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Structured and Hinted Assumptions

Polynomials and rational functions — “Structure from the outside”

Vanishing SIS [Cini-L-Malavolta23]

SIS but matrix A consists of rational functions evaluations at random points, e.g. Vandermonde

1 a ar!
A=|: ¢ :
1 a, am
In other words, given random points ay, . . ., ap, find degree-m polynomial with short coefficients

which vanish at these points.

Current hardness status:
T Worst-to-average reduction for constant degree polynomials [Preprint, L-Jykinen]
T (Speculation) Worst-to-average reduction for constant individual-degree polynomials
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Structured and Hinted Assumptions

SIS and LWE with hints

Some (oversimplified) examples:

Evasive LWE [Wee22]

If LWE w.r.t. matrix (A||P) is hard, then LWE w.r.t. matrix A given A; (P) as hints is hard.

One-More Inhomogeneous SIS (OM-ISIS) [Agrawal-Kirshanova-Stehlé-Yadav22]

Given A <= Zg*™, k-time oracle access to A; (+), find Aagﬁ)(y,) for randomys, . . ., Yi41.
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Structured and Hinted Assumptions

SIS and LWE with hints

Some (oversimplified) examples:

Evasive LWE [Wee22]

If LWE w.r.t. matrix (A||P) is hard, then LWE w.r.t. matrix A given A; (P) as hints is hard.

One-More Inhomogeneous SIS (OM-ISIS) [Agrawal-Kirshanova-Stehlé-Yadav22]

Given A <= Zg*™, k-time oracle access to A; (+), find Aagﬁ)(y,) for randomys, . . ., Yi41.

Current hardness status:
No result
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Structured and Hinted Assumptions

New source of hardness?

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find Aagﬂ)(y) for random y.
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Structured and Hinted Assumptions

New source of hardness?

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find Aagﬂ)(y) for random y.

Current hardness status:
Assuming sub-exponential-secure OWF, as hard as SIS in 29(") time and m°(") memory
[Preprint, Albrecht-L-Postlethwaite]
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Structured and Hinted Assumptions

New source of hardness?

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find ASEB)(y) for random y.

Current hardness status:
Assuming sub-exponential-secure OWF, as hard as SIS in 29(") time and m°(") memory
[Preprint, Albrecht-L-Postlethwaite]

T Current best attack against SIS takes either

1 enumeration: 20(™1°€ M) time and m°(!) memory, or
1 sieving: 2°(™) time and 2°(™) memory, or
I interpolation of above

T Basing security on exponential-time-hardness or memory-hardness is rare.
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Structured and Hinted Assumptions

Reduction Template

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find Aagﬂ)(y) for random y.

T Reduction from $kHSIS to kHISIS
$kHSIS: Given A <8 Zg ™ and Xy, . . . , Xy ¢ A; (0), output highly entropic sample of Aggﬂ)(o).
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Structured and Hinted Assumptions

Reduction Template

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find Aagﬂ)(y) for random y.

T Reduction from $kHSIS to kHISIS
$kHSIS: Given A <8 Zg ™ and Xy, . . . , Xy ¢ A; (0), output highly entropic sample of Aggﬂ)(o).

t Run $kHSIS algorithm 2°(™ times to produce a list of 2°(™) samples of Aggﬁ)(o).
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Structured and Hinted Assumptions

Reduction Template

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find Aagﬂ)(y) for random y.

T Reduction from $kHSIS to kHISIS
$kHSIS: Given A <8 Zg ™ and Xy, . . . , Xy ¢ A; (0), output highly entropic sample of Aggﬂ)(o).

t Run $kHSIS algorithm 2°(™ times to produce a list of 2°(™) samples of Aggﬁ)(o).

t Argue existence of close pairs in list, close = |ju — v|| < .
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Structured and Hinted Assumptions

Reduction Template

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find ASEB)(y) for random y.

T Reduction from $kHSIS to kHISIS
$kHSIS: Given A <8 Zg ™ and Xy, . . . , Xy ¢ A; (0), output highly entropic sample of Aggﬂ)(o).

t Run $kHSIS algorithm 2°(™ times to produce a list of 2°(™) samples of Aggﬁ)(o).

t Argue existence of close pairs in list, close = |ju — v|| < .
T Take differences of close pairs to get improved hints.
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Structured and Hinted Assumptions

Reduction Template

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find ASEB)(y) for random y.

T Reduction from $kHSIS to kHISIS
$kHSIS: Given A <8 Zg ™ and Xy, . . . , Xy ¢ A; (0), output highly entropic sample of Aggﬁ)(o).

t Run $kHSIS algorithm 2°(™ times to produce a list of 2°(™) samples of Aggﬁ)(o).

t Argue existence of close pairs in list, close = |ju — v|| < .
T Take differences of close pairs to get improved hints.
7 Caution: Need to generate lists pseudorandomly, otherwise need 20(m) memory.
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Structured and Hinted Assumptions

Reduction Template

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A < Zg*™, k independent samples X1, . . . , Xx <5 A; (0), find ASEB)(y) for random y.

T Reduction from $kHSIS to kHISIS

$kHSIS: Given A <8 Zg ™ and Xy, . . . , Xy ¢ A; (0), output highly entropic sample of Aggﬁ)(o).
Run $kHSIS algorithm 2°(™ times to produce a list of 2°(™ samples of Aggﬁ)(o).

Argue existence of close pairs in list, close = |ju — v|| < 3.

Take differences of close pairs to get improved hints.

Caution: Need to generate lists pseudorandomly, otherwise need 20(m) memory.

— =+ = — =+

Feed improved hints back to the $kHSIS algorithm. Repeat.
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Summary

Summary

T How hard are structured and hinted variants of SIS and LWE?
T Attacks? (Even sub-exponential attacks are interesting)

T Reductions from standard SIS and LWE?

T Worst-case to average-case reductions?

T More foundational work needed!

Russell W. F. Lai

Aalto University, Finland
N russell.lai@aalto.fi
':e:' russell-lai.hk

PN

& research.cs.aalto.fi/crypto Thank You!
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