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Main question

Which problems have
constant cost?
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LHIEPI:d  ° New perspective + tools
e Few examples known

e Many open problems!



Tree
Adjacency
Problem




Tree
Adjacency
Problem




Tree
Adjacency
Problem

2 Equality tests! = O(1) cost
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Adjacency Planar graph is union of 3 forests

— Run Tree Adjacency thrice

Problem



Quiz3

Alice: 001110001010100010010101010010
Bob: 001110101010100010010101010010

Differ in one coordinate?

1-Hamming

Distance
Problem




Quiz 3

Alice: 001110001010100010010101010010
Bob: 001110101010100010010101010010

Differ in one coordinate? @

1-;2:2':;29 k-HD has complexity ©(k log k)
|
[Saglam, FOCS"18]

Problem
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Large alphabet?

Alice: ATGCGATA
— 1000 0100 0010 0001 0010 1000 0100 1000

Bob: ATGTGATA
— 1000 0100 0010 0100 0010 1000 0100 1000

Large Alphabet Differ in two coordinates?
1-HD Problem



Large alphabet?

Alice: ATGCGATA
— 1000 0100 0010 0001 0010 1000 0100 1000

Bob: ATGTGATA
— 1000 0100 0010 0100 0010 1000 0100 1000

arge e [RE et
1-HD Problem . P




Non-example

Alice: x € [n]
Bob: y € [n]

Doesx > y?!

Greater-Than
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Non-example

Alice: x € [n]
Bob: y € [n]
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Doesx > y?!

Cost O(loglogn) [BW15, Viol5]

Greater-Than




Enough examples... Next:

Structure theory
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Alice: x — X

N

BOb: y % y, B(X',Y') ﬁ oo o

A can be solved deterministically
oy making O(1) oracle calls to B



Reductions

Tree )
< M <

Planar

Adjacency

A can be solved deterministically
oy making O(1) oracle calls to B



Reductions

Planar —_— Tree — :
Adjacency I Adjacency S Equality

A can be solved deterministically
oy making O(1) oracle calls to B



Reductions

: 1-Hamming

A can be solved deterministically
oy making O(1) oracle calls to B



Reductions

1- Hammlng

[HHH"22, HWZ'22]

A can be solved deterministically
oy making O(1) oracle calls to B
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Infinite hierarchy [FHHH, STOC'24]

GTIN < EITD < &5 < & < -

(+ no single complete problem)

Is this everything?
Does every O(1)-cost problem reduce to k-HD?

|[HHH22b, HWZ22, HHH22a, EHK22, HHP+22, HZ24, HH24, FHHH?24]




Main result

New O(1)-cost problem
that does not reduce to k-HD




Main result

New O(1)-cost problem
that does not reduce to k-HD

Bonus: Fun coding theory lemma




New problem



{4,4}-Hamming Distance
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dist: 4

Output
IIYESII

Alice: X € {0,1}'*"

Bob: Y € {0,1}'"""




{4,4}-Hamming Distance  ©(1)-cost protocol:
Check dtwo unequal rows

Choose random A C [n]
Check dist(X,, Y,) =4

JUULUO | Check dist(Xj, Y;) =4
01000010101011| dist:
01010111000010 = 0TO0TOTTTO000T0
10011100101111 = 10011100101111
10010111001001| dist: 4 |10110101101000

Output
IIYESII

11100000000000 11100000000000

X e {01}

Bob: Y € {0,1}""




{4,4}-Hamming Distance ©O(1)-cost protocol:

Check dtwo unequal rows
Choose random A C [n]
Check dist(X,, ¥Y,) =4
Check dist(X;, Y;) = 4

01100110111110
1000100111111
01000010101011
01010111000010
10011100101111
10010111001001
11100000000000

dist: S EI N0 %

Alice: X € {0,1}"" egtE%L,I,t 14,4}-HD £ k-HD



Why {4,4} ?



{1,1}-Hamming Distance

‘01100110111110
1000100:
00000010100111
01010111000010
10011100101111
10010111001001
11100000000000

Alice: X € {0,1}""

dist: 1

Output
IIYESII

‘01100110111110'
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00001010100111
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11100000000000

Bob: Y € {0,1}'""



{1,1}-Hamming Distance ©Oracle protocol:
Check d two unequal rows

Check dist(X, Y) = 2

100010011-
00001010100111]
01010111000010
10011100101111
10010111001000
11100000000000

'01100110111110
1000100111111°
00000010100111
01010111000010
10011100101111
10010111001001
11100000000000

1 =

dist: 1

Output
“YES”

Bob: Y € {0,1}™"

X = {0,1 }an




{2,2}-Hamming Distance

‘01100110111110
1000100:
00000010100111
01010111000010
10011100101111
10010111001001
11100000000000

dist: 2

Output
IIYESII

Alice: X € {0,1}""

‘01100110111110'
1000100°
00001010000111]
01010111000010
10011100101111
11010111001000
11100000000000

Bob: Y € {0,1}'""



Oracle protocol:

{2,2}-Hamming Distance

Check 4 two unequal rows
Check dist(X, Y) =4

# Must be {2,2} or {1,3}

1000100111111°
00000010100111
01010111000010
10011100101111 —
1001011100100 | dist: 2 |11010111001000
11100000000000 = 11100000000000

X € {0,117 9%%‘? Bob: Y € {0,117

dist: Let (x, v) be row parities
_ Checkx =y




Coding lemma

Towards {4,4}-HD « k-HD
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{4,4}-HD £ k-HD

Coding lemma

Infinite f-code family has

f4) = L(f12) + f16)




{4,4}-HD £ k-HD

Infinite f-code family has
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{4,4}-HD £ k-HD

Easy JJ ﬂ Ramsey theory

Infinite f-code family has

f(4) = =(f2) + f6))

Codlng lemma




EI non-affine f-code £ = {4,4}-HD < k- HD




1 non-affine f-code E —> {4,4}-HD < k-HD

X e {01}

Bob
Y € {01}

Oracle protocol:

Check 4 two unequal rows
Check dist(X, Y) = 8

#{1,7}, 12,6}, {3,5}, or {4,4}
Check row parities

#{2,6}or {4,4}

Encode rows by £, check:

dist(E(X), E(Y)) = 2-f(4)




1 non-affine f-code E —> {4,4}-HD < k-HD

X e {01}

Bob

Y € {01}

Oracle protocol:

Check 4 two unequal rows
Check dist(X, Y) = 8

#{1,7}, 12,6}, {3,5}, or {4,4}
Check row parities

#{2,6}or {4,4}

Encode rows by £, check:

dist(E(X), E(Y)) = 2-f(4)




1 non-affine f-code E —> {4,4}-HD < k-HD

Bob

X € {0,1}>n Y € {0,1}™>"
E(X): E(Y):
EX) | | EY)
E(X,) E(Y)
E(X5) E(Y5)
E(X,) E(Y,)

E(X5) E(Y5)

Oracle protocol:

Check 4 two unequal rows
Check dist(X, Y) = 8

#{1,7}, 12,6}, {3,5}, or {4,4}
Check row parities

#{2,6}or {4,4}

Encode rows by £, check:

dist(E(X), E(Y)) = 2-f(4)




{4,4}-HD £ k-HD

Infinite f-code family has

f(4) = =(f2) + f(6))

Coding lemma




Next for O(1)-cost?

Open problems




Open problems

O(1)-cost
e More examples!
Complete hierarchy?

Characterisation?

» Structure of O(1)-cost ’

Monochrome rectangles?
One-sided error?

- Intersection classes

» O(1)-rk,. closed under OR? O(1)-rk,.
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Structure in Communication Complexity and Constant-Cost
Complexity Classes

Hamed Hatami' Pooya Hatami?

Abstract

Several theorems and conjectures in communication complexity state or speculate that the
complexity of a matrix in a given communication model is controlled by a related analytic
or algebraic matrix parameter, e.g., rank, sign-rank, discrepancy, etc. The forward direction
is typically easy as the structural implications of small complexity often imply a bound on
some matrix parameter. The challenge lies in establishing the reverse direction, which requires
understanding the structure of Boolean matrices for which a given matrix parameter is small or
large. We will discuss several research directions that align with this overarching theme.

1 Introduction

In 1979, Yao [Yao79] introduced an abstract model for analyzing communication. It quickly became
apparent that the applications of this elegant paradigm go far beyond the concept of communica-
tion. Many results in communication complexity have equivalent formulations in other fields that
are equally natural, and the techniques developed within this framework have proven to be powerful
tools applicable across various domains. Today, communication complexity is a vibrant research
area with many connections across theoretical computer science and mathematics: in learning the-
ory, circuit design, pseudorandomness, data streaming, data structures, computational complexity,
computer networks, time-space trade-offs, discrepancy theory, and property testing.

In this article, we focus on the most standard framework where a communication problem
is simply a Boolean matrix. Formally, there are two parties, often called Alice and Bob, and a
communication problem is defined by a matrix F € {0, l}X XY Alice receives a row index z € X,
and Bob receives a column index y € ). Together, they should compute the entry F(z,y) by
exchanging bits of information according to a previously agreed-on protocol tailored to F'. There is




Thank youl!



