

Constant-Cost Communication

Yuting Fang <u>Mika Göös</u> Nathan Harms Pooya Hatami

Alice: $x \in \{0,1\}^n$

Bob: $y \in \{0,1\}^n$

Q: How many bits to communicate to decide x = y?

Alice: $x \in \{0,1\}^n$

Bob: $y \in \{0,1\}^n$

Q: How many bits to communicate to decide x = y?

Deterministic: n bits

Alice: $x \in \{0,1\}^n$

Bob: $y \in \{0,1\}^n$

Q: How many bits to communicate to decide x = y?

Deterministic: n bits

Randomised: O(1)

Equality Problem

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	O	0
0	0	0	1	0	O	0	O	0
0	0	0	0	1	0	0	O	0
0	0	0	O	0	1	0	O	0
0	0	0	0	0	0	1	O	0
0	0	O	O	0	0	0	1	0
0	0	0	O	0	0	0	0	1

2ⁿ

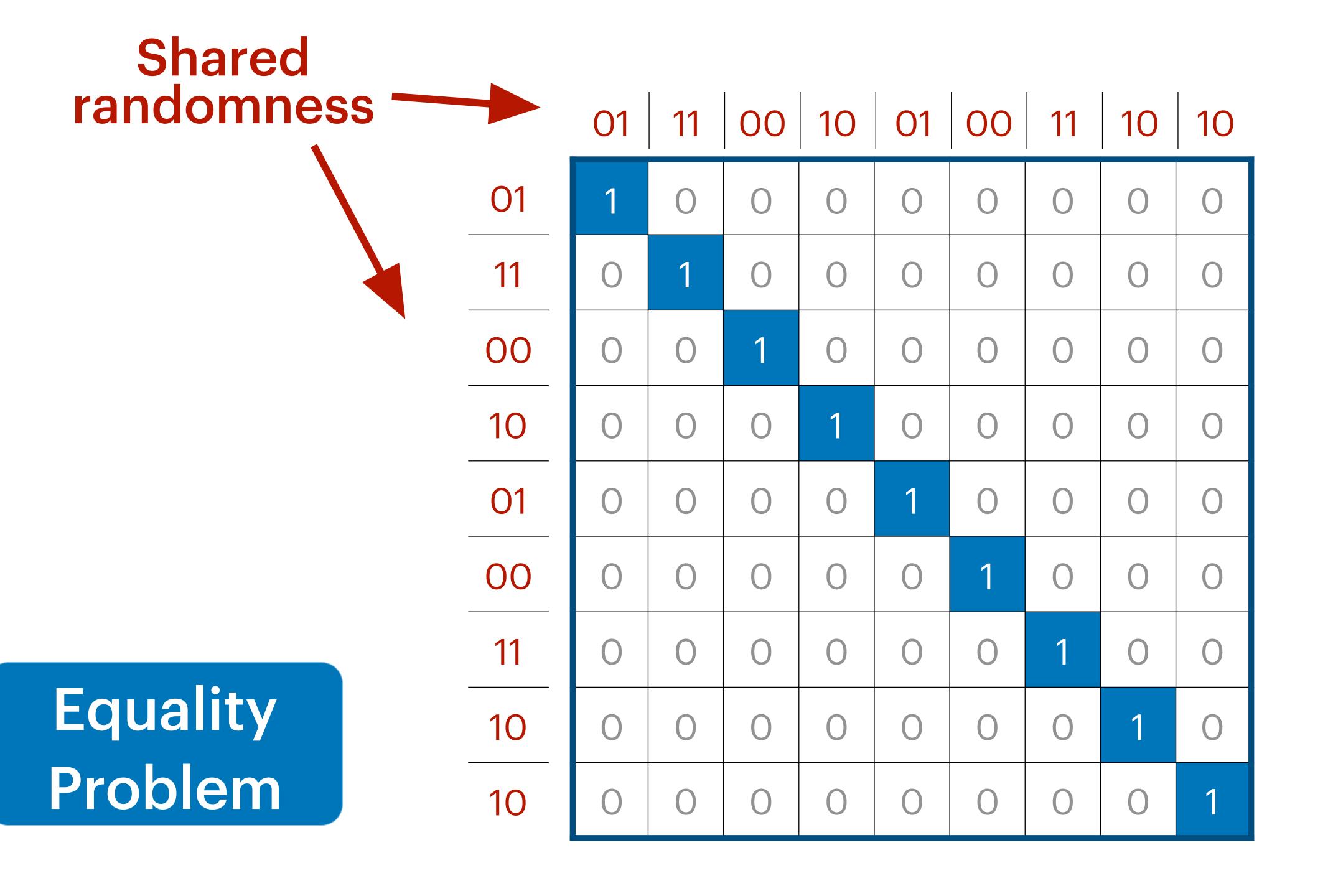
1	0	0	0	0	0	0	0	O
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1

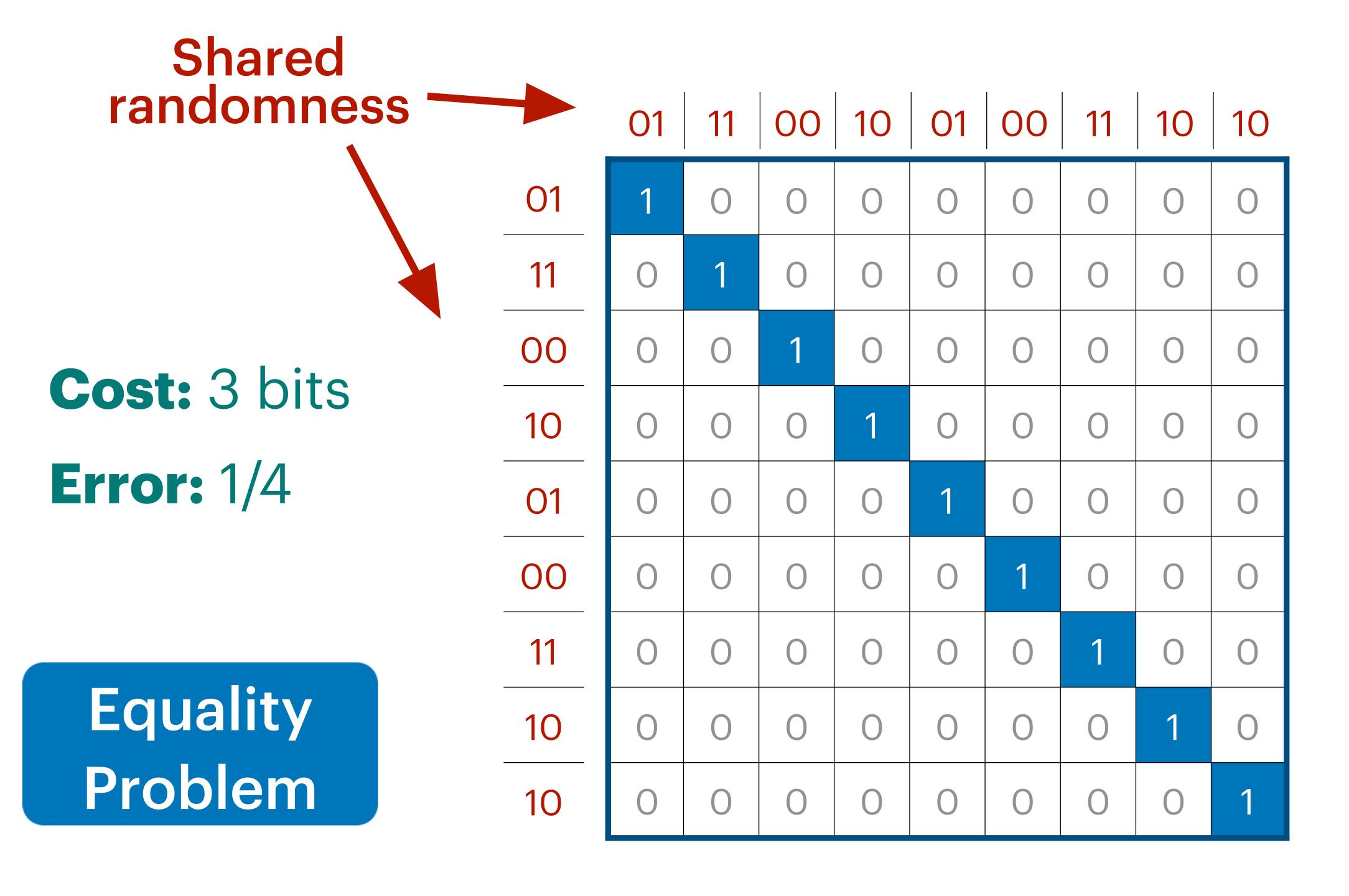
2"

Equality Problem

Equality Problem

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	O	0
0	0	0	1	0	O	0	O	0
0	0	0	0	1	0	0	O	0
0	0	0	O	0	1	0	O	0
0	0	0	0	0	0	1	O	0
0	0	O	O	0	0	0	1	0
0	0	0	O	0	0	0	0	1





Main question

Which problems have constant cost?

Main question

Which problems have constant cost?

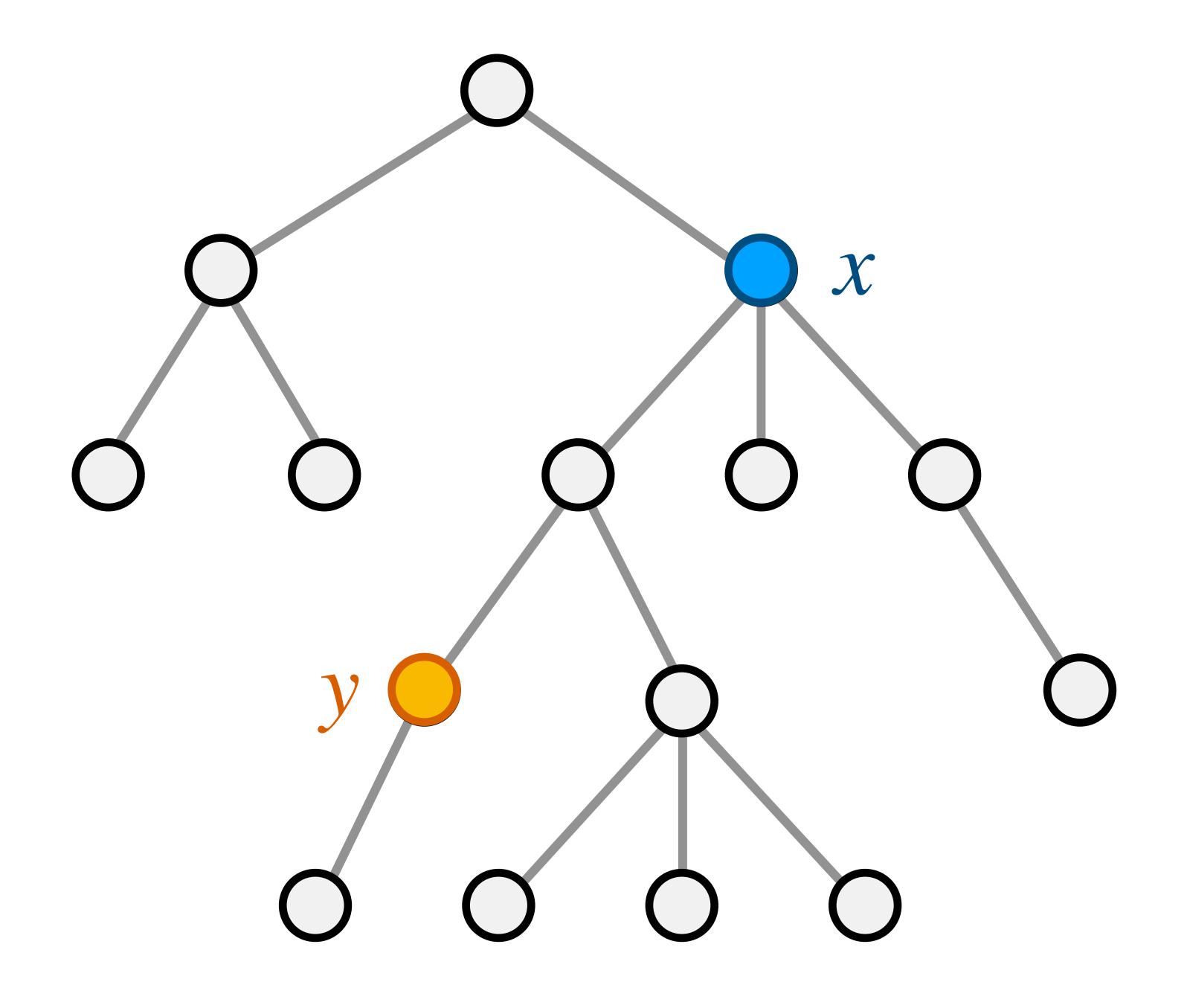
- New perspective + tools
- Few examples known
- Many open problems!

Alice: $x \in V$

Bob: $y \in V$

Does $x \sim y$?

Tree
Adjacency
Problem

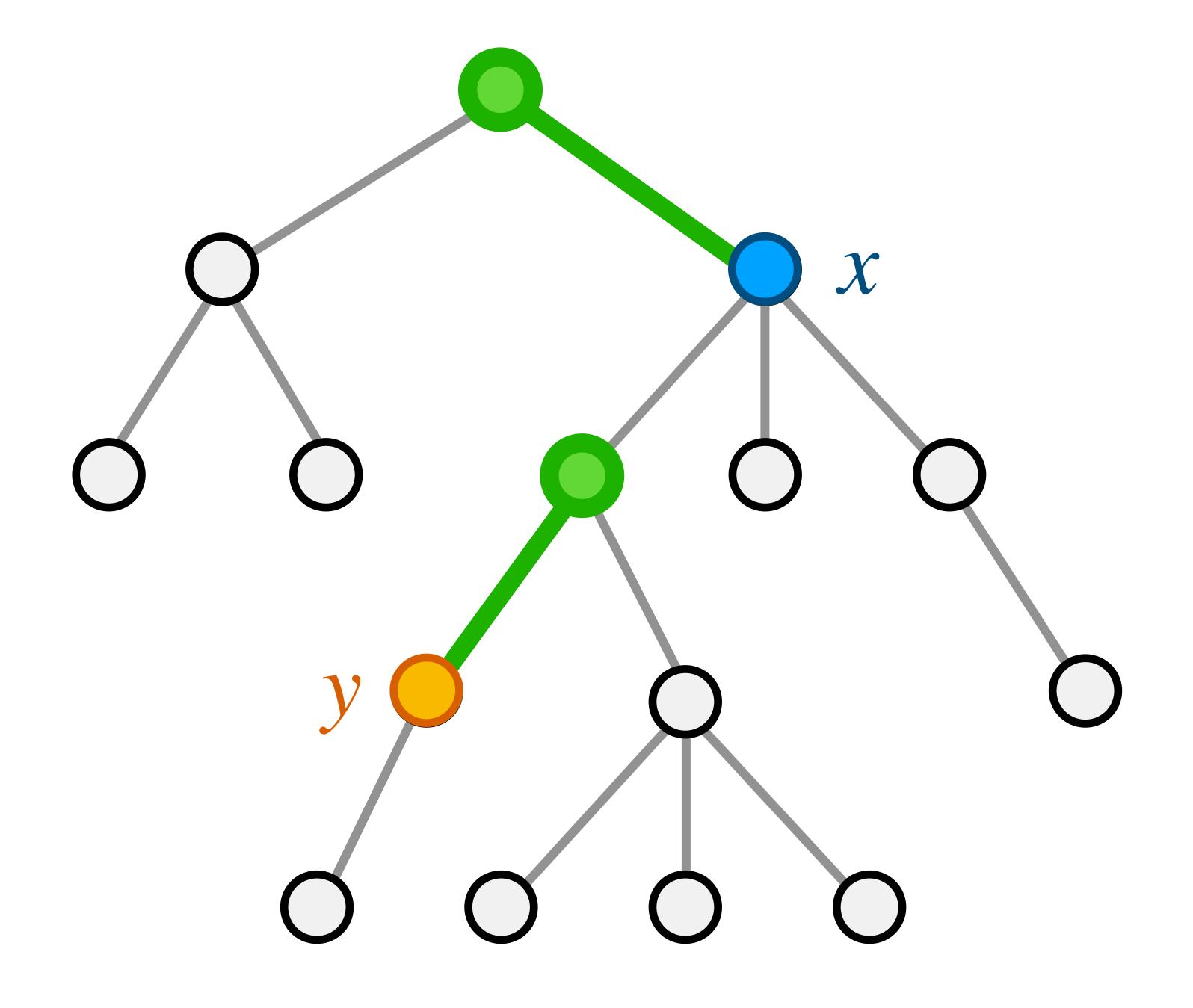


Alice: $x \in V$

Bob: $y \in V$

Does $x \sim y$?

Tree
Adjacency
Problem

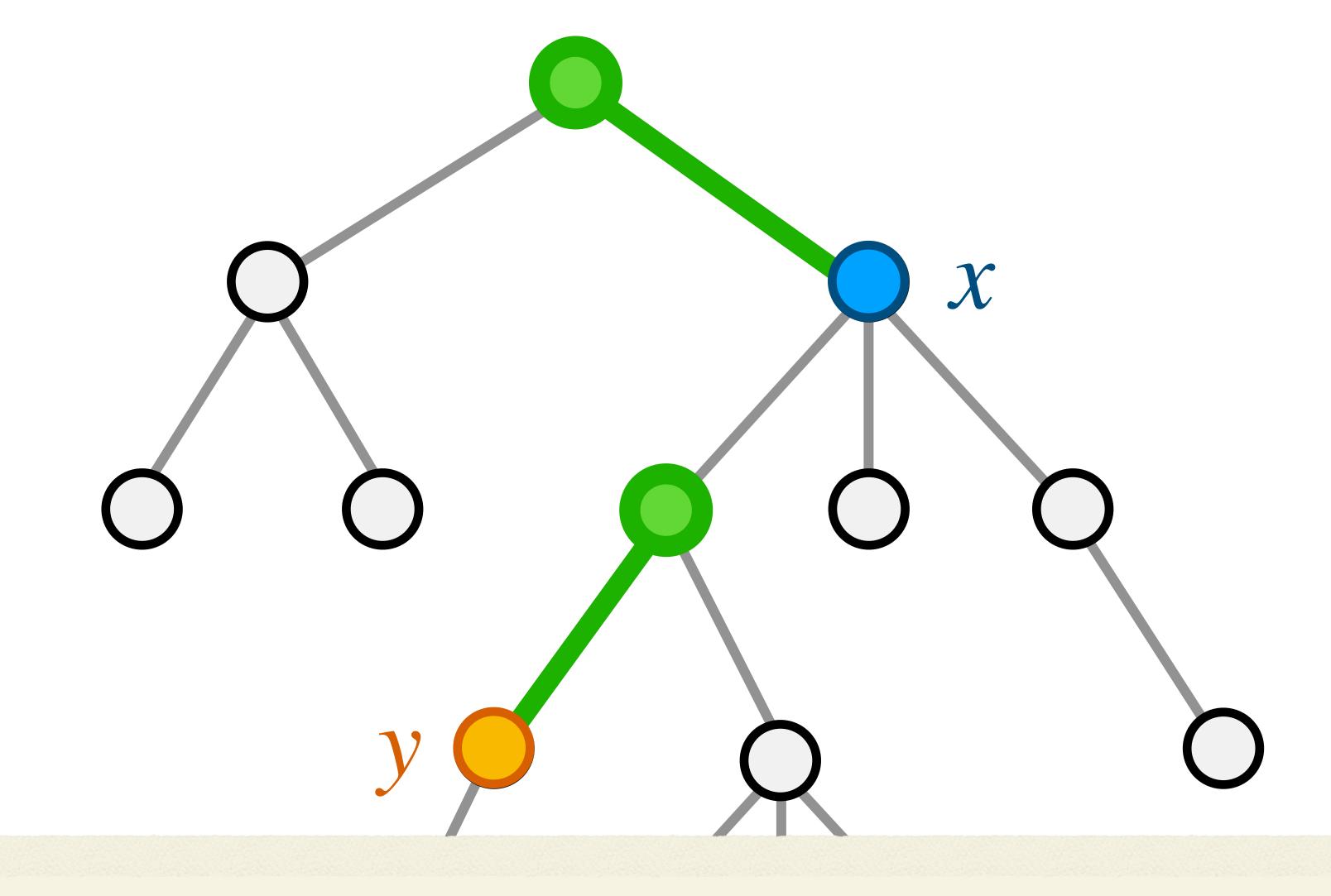


Alice: $x \in V$

Bob: $y \in V$

Does $x \sim y$?

Tree
Adjacency
Problem



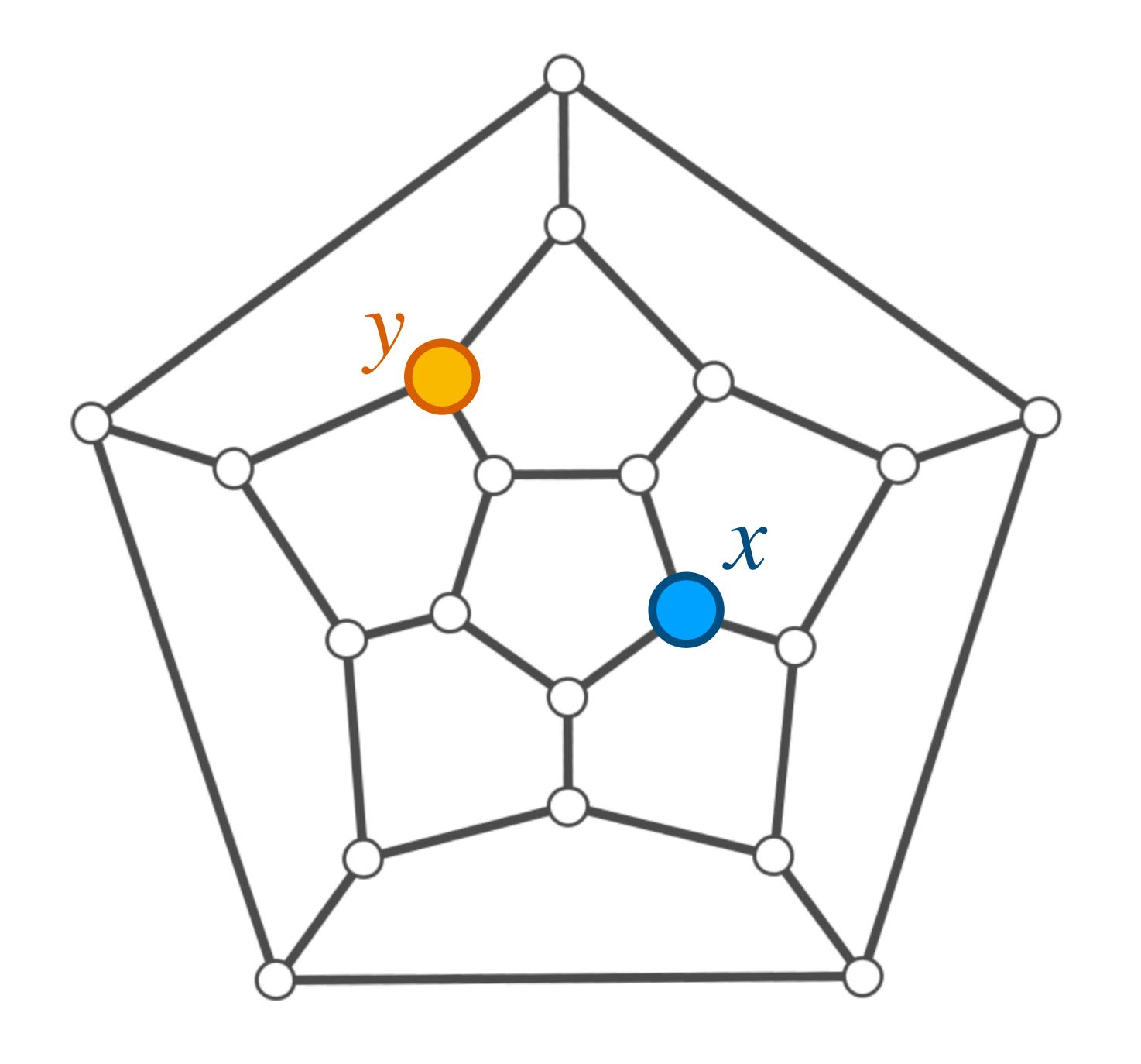
2 Equality tests! = O(1) cost

Alice: $x \in V$

Bob: $y \in V$

Does $x \sim y$?

Planar
Adjacency
Problem

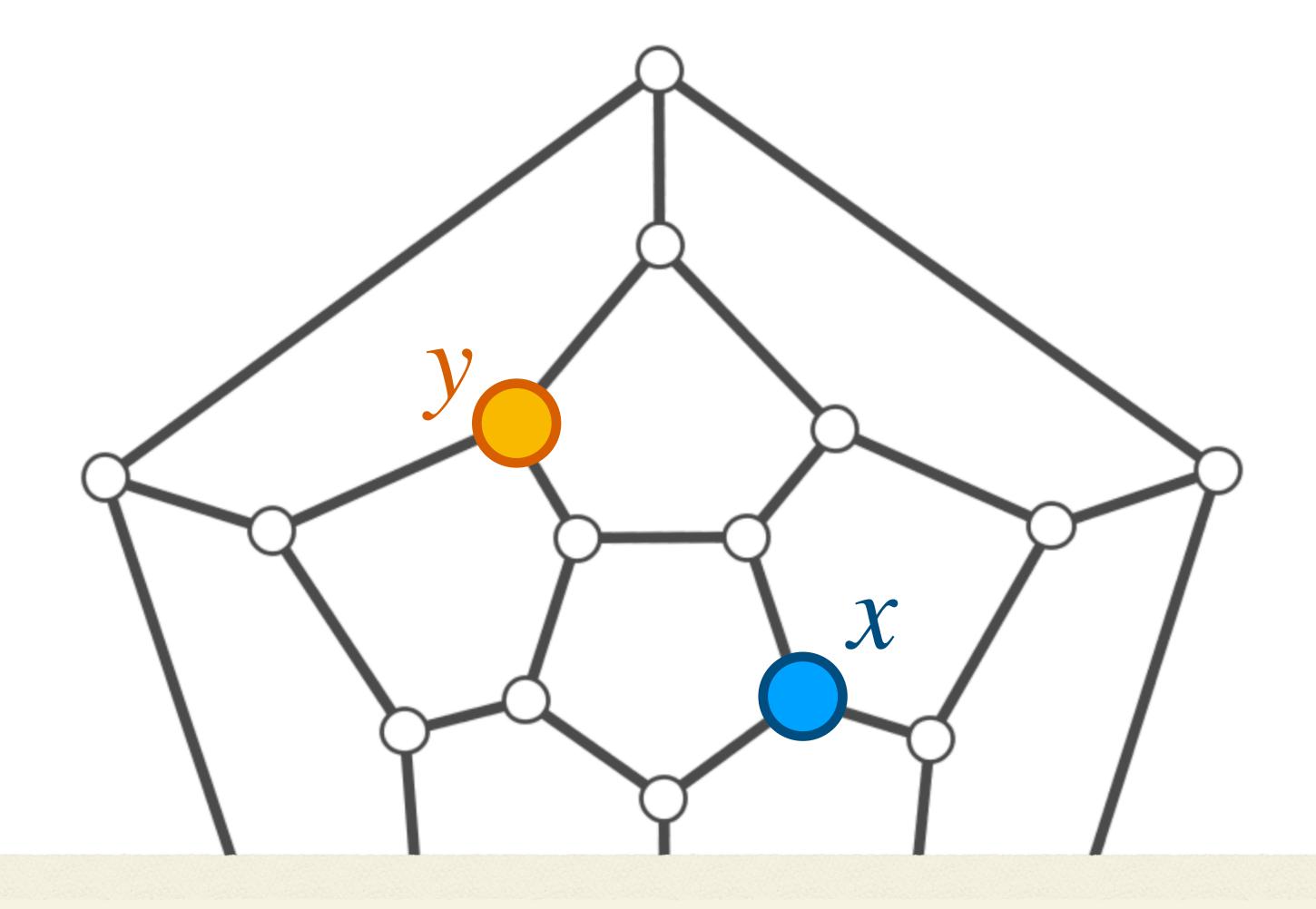


Alice: $x \in V$

Bob: $y \in V$

Does $x \sim y$?

Planar
Adjacency
Problem



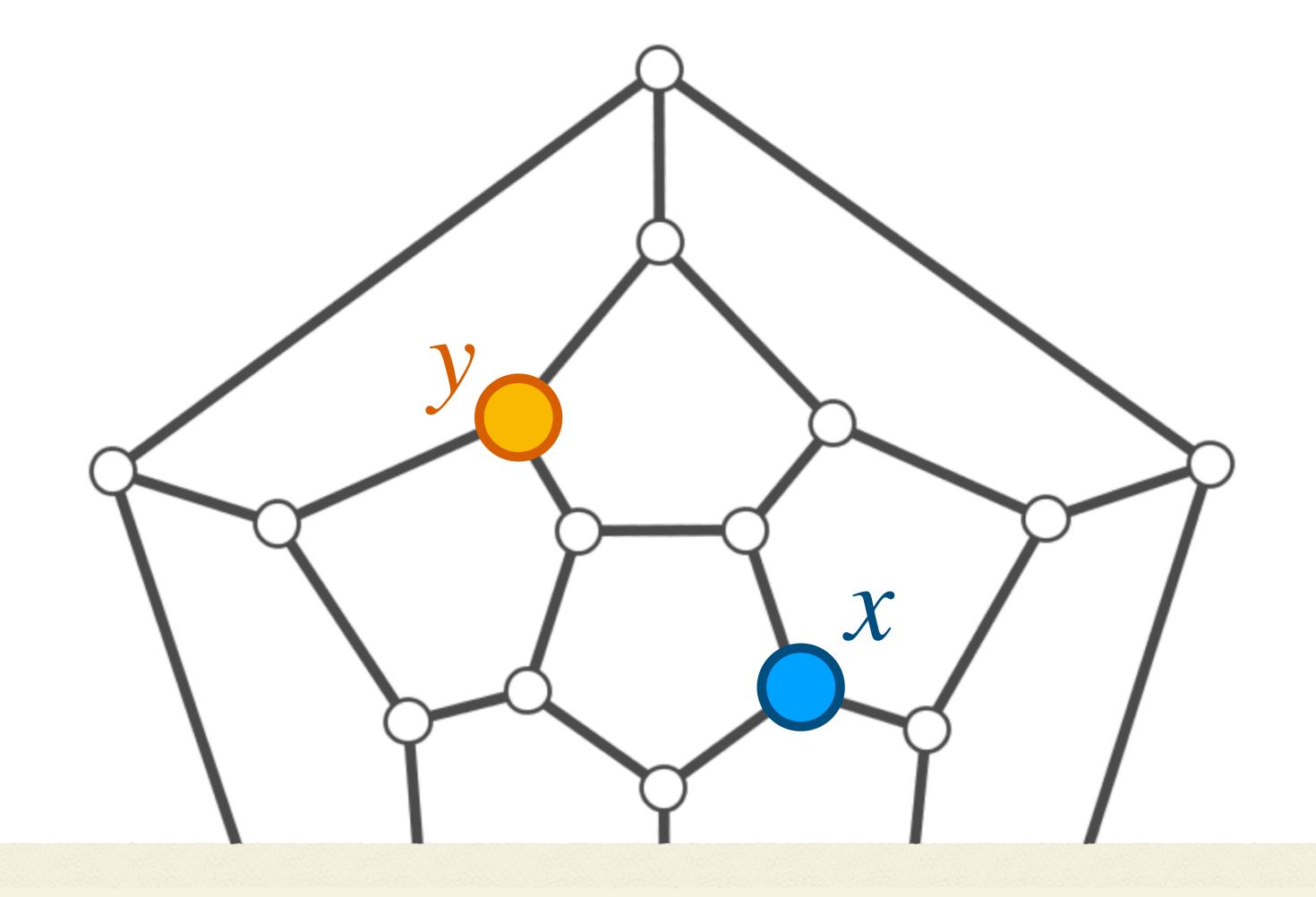
Planar graph is union of 3 forests

Alice: $x \in V$

Bob: $y \in V$

Does $x \sim y$?

Planar
Adjacency
Problem

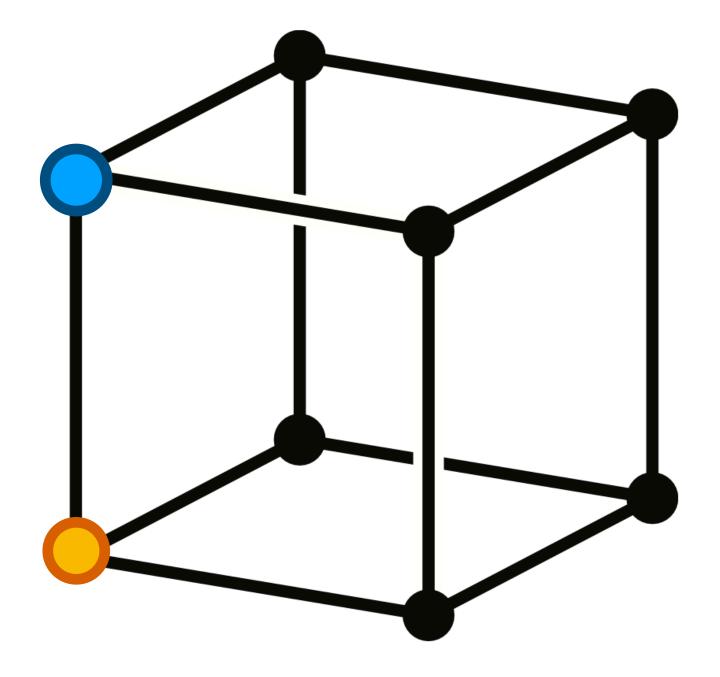


Planar graph is union of **3 forests**→ Run **Tree Adjacency** thrice

Bob: 0011101010101001001010101010010

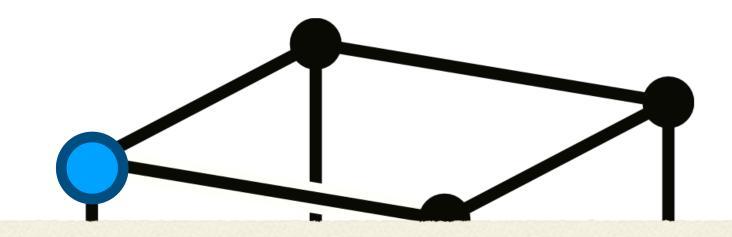
Differ in one coordinate?

1-Hamming
Distance
Problem



Bob: 0011101010101001001010101010010

Differ in one coordinate?



1-Hamming
Distance
Problem

k-HD has complexity $\Theta(k \log k)$ [Saglam, FOCS'18]

Alice: ATGCGATA

Bob: ATGTGATA

Large Alphabet
1-HD Problem

```
Aice: ATGCGATA
```

```
\rightarrow 1000 0100 0010 0001 0010 1000 0100 1000
```

```
Bob: ATGTGATA
```

```
\rightarrow 1000 0100 0010 0100 0010 1000 1000
```

Large Alphabet
1-HD Problem

```
Aice: ATGCGATA
```

```
\rightarrow 1000 0100 0010 0001 0010 1000 0100 1000
```

```
Bob: ATGTGATA
```

 \rightarrow 1000 0100 0010 0100 0010 1000 1000

Large Alphabet
1-HD Problem

Differ in two coordinates?

```
Alice: ATGCGATA
```

 \rightarrow 1000 0100 0010 0001 0010 1000 0100 1000

Bob: ATGTGATA

 \rightarrow 1000 0100 0010 0100 0010 1000 1000

11

Large Alphabet
1-HD Problem

Differ in two coordinates?

→ Run 2-HD protocol

Non-example

Alice: $x \in [n]$

Bob: $y \in [n]$

Does $x \ge y$?

Greater-Than
Problem

1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	O	O	1	1	1	1	1	1
0	O	O	O	1	1	1	1	1
0	0	O	0	0	1	1	1	1
0	0	0	0	0	0	1	1	1
0	O	0	O	0	0	O	1	1
0	0	0	0	0	0	0	0	1

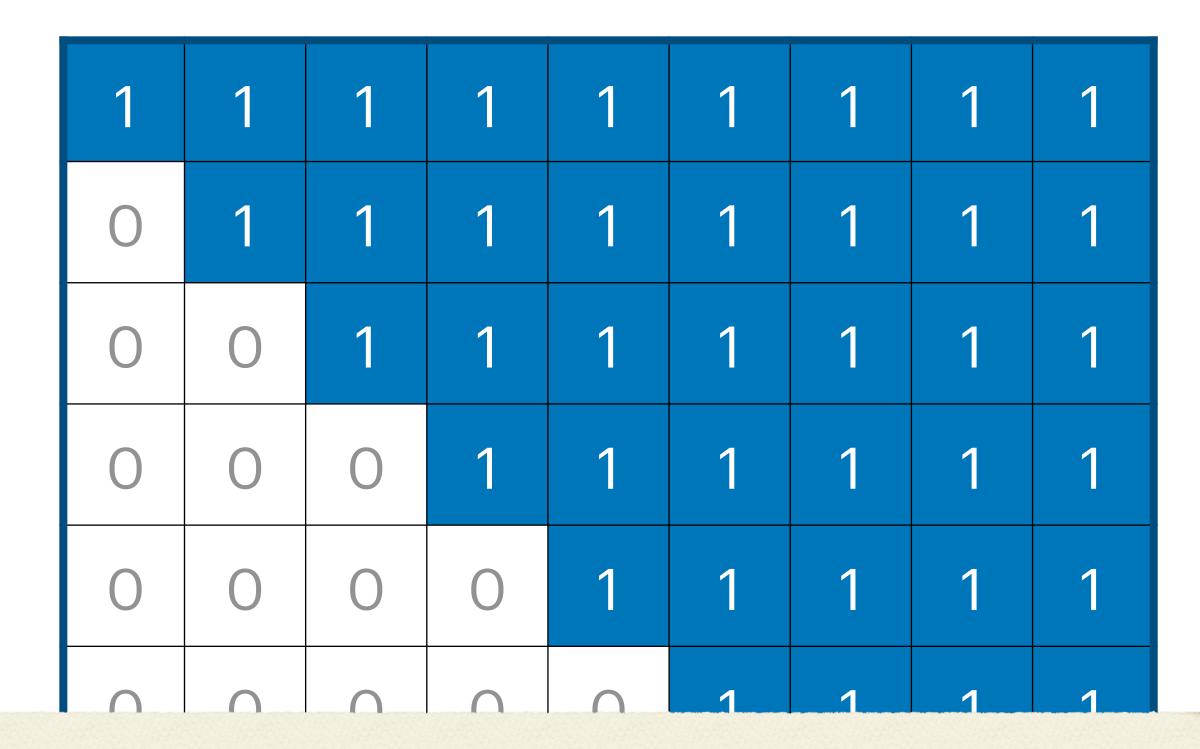
Non-example

Alice:
$$x \in [n]$$

Bob:
$$y \in [n]$$

Does
$$x \ge y$$
?

Greater-Than
Problem



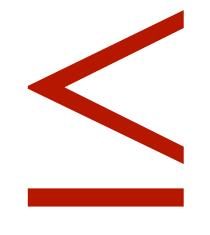
Cost
$$\Theta(\log \log n)$$
 [BW15, Vio15]

Note VC = O(1) and
$$rk_{\pm}$$
 = O(1)

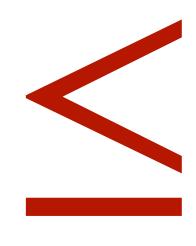
Enough examples... Next:

Structure theory

Planar Adjacency



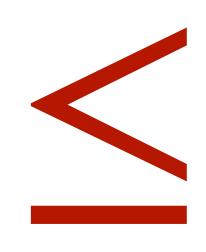
Tree Adjacency



Equality

Planar Adjacency

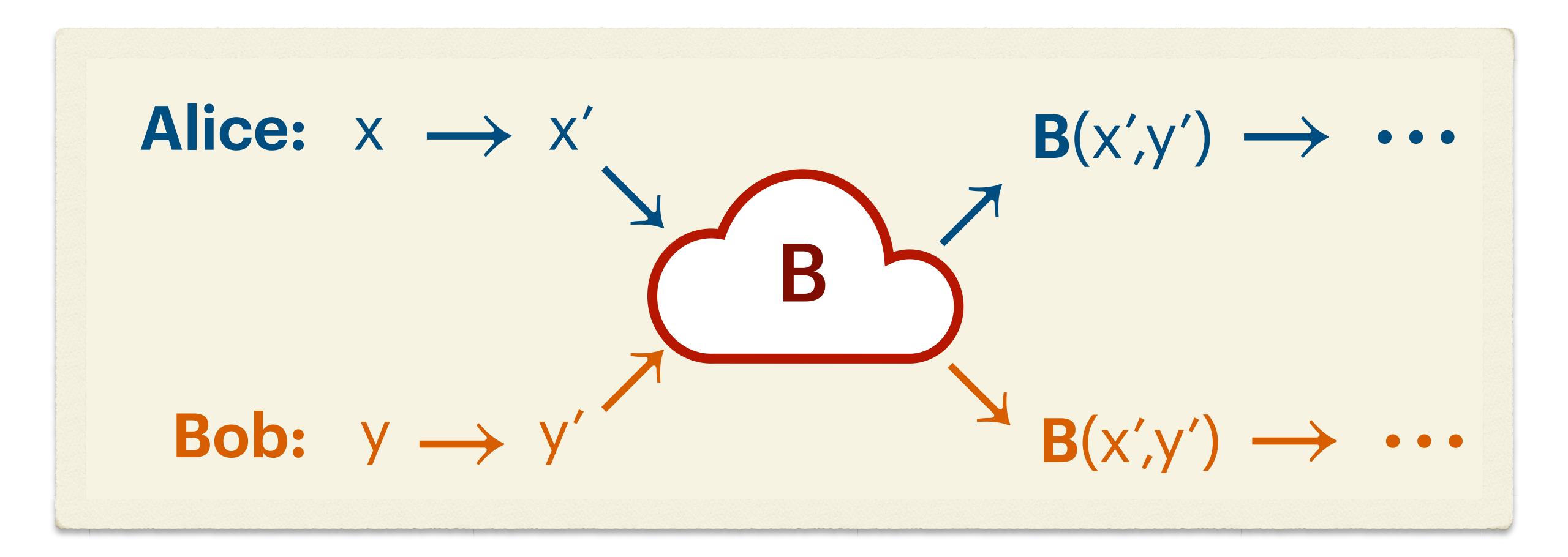
Tree Adjacency



Equality

 $A \leq B$:

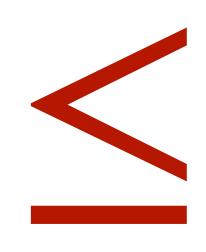
A can be solved deterministically by making O(1) oracle calls to B



 $A \leq B$: A can be solved deterministically by making O(1) oracle calls to B

Planar Adjacency

Tree Adjacency



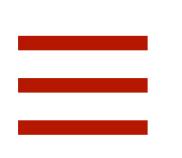
Equality

 $A \leq B$:

A can be solved deterministically by making O(1) oracle calls to B

Planar Adjacency

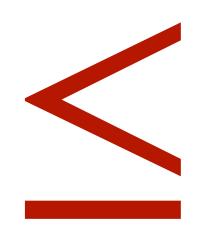
Tree Adjacency



Equality

 $A \leq B$:

A can be solved deterministically by making O(1) oracle calls to B



1-Hamming
Distance

 $A \leq B$: A can be solved deterministically by making O(1) oracle calls to B

 $A \leq B$: A can be solved deterministically by making O(1) oracle calls to B

Infinite hierarchy

[FHHH, STOC'24]

Infinite hierarchy

[FHHH, STOC'24]

(+ no single complete problem)

Infinite hierarchy

[FHHH, STOC'24]

(+ no single complete problem)

Is this everything?

Does every O(1)-cost problem reduce to k-HD?

[HHH22b, HWZ22, HHH22a, EHK22, HHP+22, HZ24, HH24, FHHH24]

New O(1)-cost problem

that does not reduce to k-HD

New O(1)-cost problem

that does not reduce to k-HD

Bonus: Fun coding theory lemma

New problem

```
01100110111110
01000010101011
01010111000010
10010111001001
```

Alice:
$$X \in \{0,1\}^{n \times n}$$

```
0110011011110
  01010100111
0101011100010
10110101101000
```

Bob:
$$Y \in \{0,1\}^{n \times n}$$

```
01100110111110
01000010101011
01010111000010
10010111001001
11100000000000
```

```
dist:
dist:
```

```
0110011011110
00001010100111
01010111000010
10011100101111
10110101101000
111000000000
```

Alice: $X \in \{0,1\}^{n \times n}$

Output
"YES"

Alice: $X \in \{0,1\}^{n \times n}$

```
= dist: 4 = 4 = 4
```

Output
"YES"

O(1)-cost protocol:

Check \exists two unequal rows Choose random $A \subseteq [n]$ Check $\mathrm{dist}(X_A, Y_A) = 4$ Check $\mathrm{dist}(X_{\bar{A}}, Y_{\bar{A}}) = 4$

```
0110011011110
010000101011
0101011100010
10011100101111
10010111001001
11100000000000
```

Alice: $X \in \{0,1\}^{n \times n}$

=
dist:
=
dist:
-

Output
"YES"

O(1)-cost protocol:

Check \exists two unequal rows Choose random $A \subseteq [n]$ Check $\mathrm{dist}(X_A, Y_A) = 4$ Check $\mathrm{dist}(X_{\bar{A}}, Y_{\bar{A}}) = 4$

Main result:

{4,4}-HD ≰ k-HD

Why {4,4}?

```
01100110111110
0000001010111
01010111000010
10010111001001
11100000000000
```

```
=
dist: 1
=
dist: 1
=
```

0110011011110

Alice: $X \in \{0,1\}^{n \times n}$

Output
"YES"

Alice: $X \in \{0,1\}^{n \times n}$

= dist: 1
= dist: 1

Output
"YFS"

Oracle protocol:

Check \exists two unequal rows Check $\operatorname{dist}(X, Y) = 2$

```
01100110111110
0000001010111
01010111000010
10010111001001
11100000000000
```

```
dist:
dist: 2
```

Output
"YES"

```
0110011011110
0000101000111
01010111000010
10011100101111
11010111001000
11100000000000
```

Alice: $X \in \{0,1\}^{n \times n}$

```
01100110111110
0000001010111
01010111000010
10010111001001
1110000000000000
```

Alice: $X \in \{0,1\}^{n \times n}$

Output
"YFS"

Oracle protocol:

Check \exists two unequal rows Check $\operatorname{dist}(X, Y) = 4$

Must be {2,2} or {1,3}

Let (x, y) be row parities Check x = y

Coding lemma

Towards {4,4}-HD ≰ k-HD

whenever f is defined

Definition

Call $E: \{0,1\}^n \to \{0,1\}^m$ an f-code iff $\operatorname{dist}(E(x), E(y)) = f(\operatorname{dist}(x, y))$

Definition

Call $E: \{0,1\}^n \to \{0,1\}^m$ an f-code iff $\operatorname{dist}(E(x), E(y)) = f(\operatorname{dist}(x, y))$

whenever f is defined

If there exists f-codes for infinitely many n, then $f(4) = \frac{1}{2}(f(2) + f(6))$

Definition

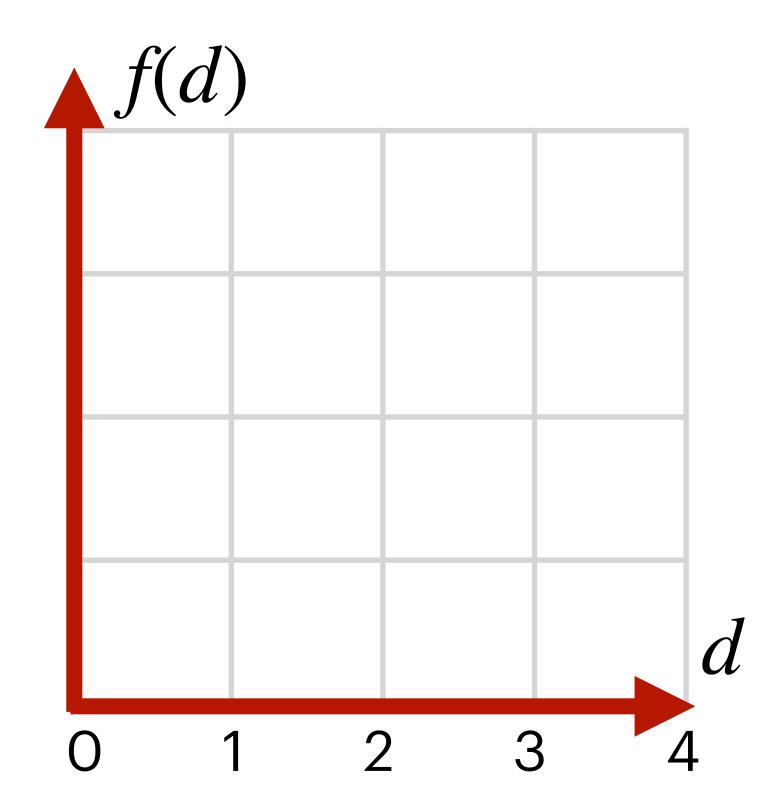
Call
$$E: \{0,1\}^n \to \{0,1\}^m$$
 an f -code iff $\operatorname{dist}(E(x), E(y)) = f(\operatorname{dist}(x, y))$ whenever f is defined

If there exists f-codes for infinitely many n, then $f(4) = \frac{1}{2}(f(2) + f(6))$

Examples

$$E(x) = xx$$

$$m = 2n$$



Definition

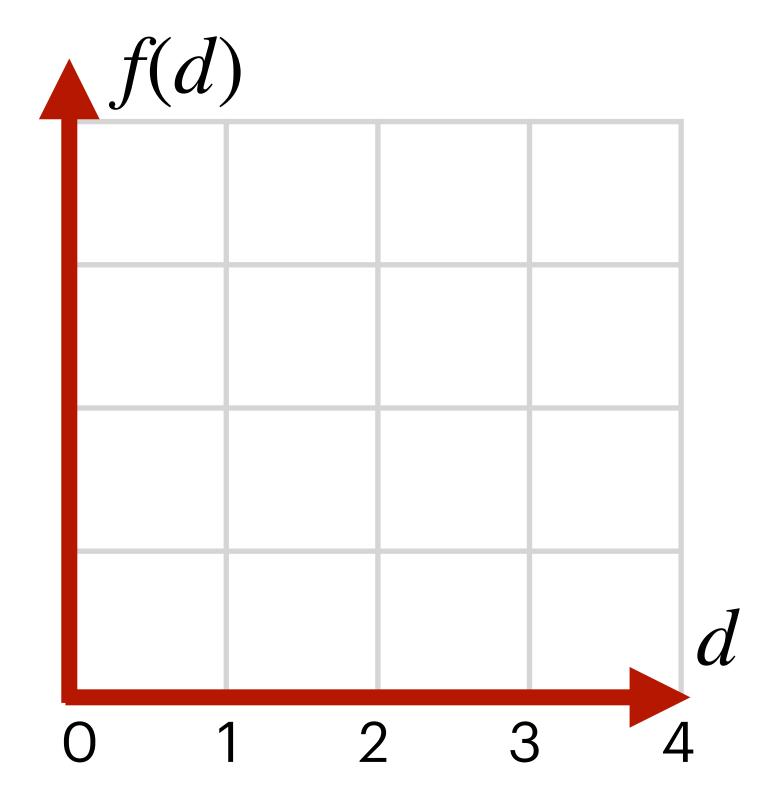
Call
$$E: \{0,1\}^n \to \{0,1\}^m$$
 an f -code iff $\operatorname{dist}(E(x), E(y)) = f(\operatorname{dist}(x,y))$ whenever f is defined

If there exists f-codes for infinitely many n, then $f(4) = \frac{1}{2}(f(2) + f(6))$

Examples

$$E(x) = e_x$$

$$m = 2^n$$



Definition

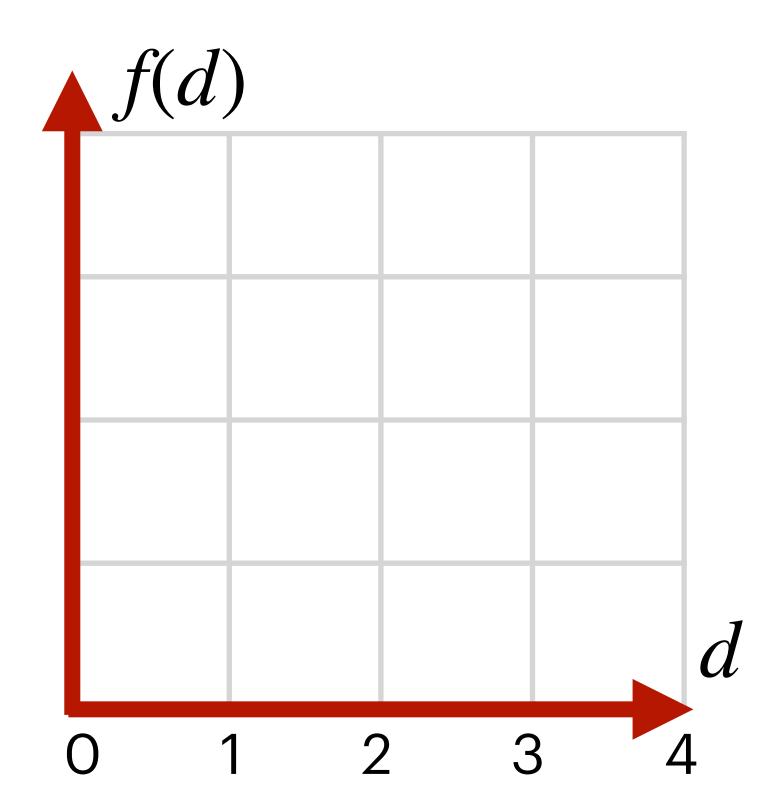
Call
$$E: \{0,1\}^n \to \{0,1\}^m$$
 an f -code iff $\operatorname{dist}(E(x), E(y)) = f(\operatorname{dist}(x, y))$ whenever f is defined

If there exists f-codes for infinitely many n, then $f(4) = \frac{1}{2}(f(2) + f(6))$

Examples

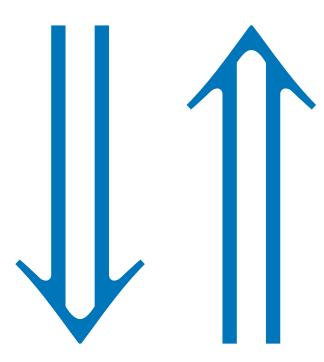
$$E(x) = \bigoplus_{i} x_{i}$$

$$m = 1$$



Coding lemma

$$f(4) = \frac{1}{2}(f(2) + f(6))$$



Coding lemma

$$f(4) = \frac{1}{2}(f(2) + f(6))$$

Coding lemma

$$f(4) = \frac{1}{2}(f(2) + f(6))$$

Alice

$$X \in \{0,1\}^{n \times n}$$

Bob

$$Y \in \{0,1\}^{n \times n}$$

Oracle protocol:

Check 3 two unequal rows Check dist(X, Y) = 8

{1,7}, {2,6}, {3,5}, or {4,4}

Check row parities

{2,6} or {4,4}

Encode rows by E, check: $dist(E(X), E(Y)) = 2 \cdot f(4)$

Alice

$$X \in \{0,1\}^{n \times n}$$

X:

$$egin{array}{c} X_1 \ X_2 \ X_3 \ X_4 \ X_5 \end{array}$$

Bob

$$Y \in \{0,1\}^{n \times n}$$

Y:

Y_1	Standard
Y_2	
Y_3	
Y_4	
Y_5	

Oracle protocol:

Check 3 two unequal rows Check dist(X, Y) = 8

{1,7}, {2,6}, {3,5}, or {4,4}

Check row parities

{2,6} or {4,4}

Encode rows by E, check: $dist(E(X), E(Y)) = 2 \cdot f(4)$

Alice

$$X \in \{0,1\}^{n \times n}$$

E(X):

$$E(X_1)$$
 $E(X_2)$
 $E(X_3)$
 $E(X_4)$
 $E(X_5)$

Bob

$$Y \in \{0,1\}^{n \times n}$$

E(Y):

```
E(Y_1)
E(Y_2)
E(Y_3)
E(Y_4)
E(Y_5)
```

Oracle protocol:

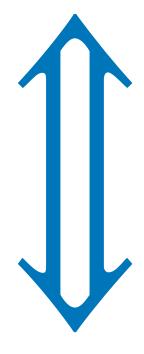
Check 3 two unequal rows Check dist(X, Y) = 8

{1,7}, {2,6}, {3,5}, or {4,4}

Check row parities

{2,6} or {4,4}

Encode rows by E, check: $dist(E(X), E(Y)) = 2 \cdot f(4)$



Coding lemma

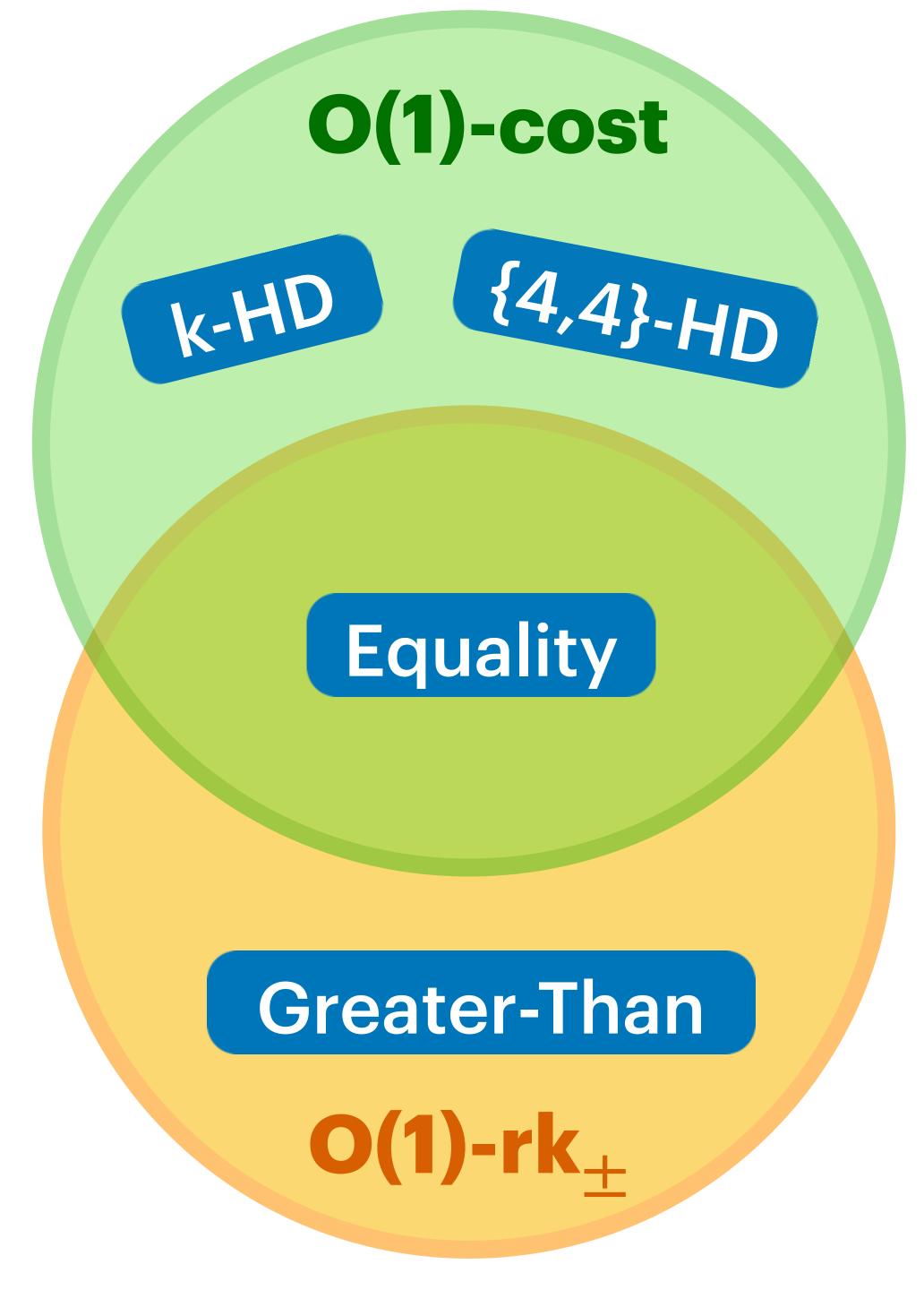
$$f(4) = \frac{1}{2}(f(2) + f(6))$$

Next for O(1)-cost?

Open problems

Open problems

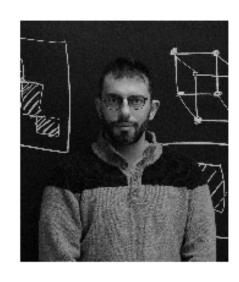
- More examples!
 Complete hierarchy?
 Characterisation?
- Structure of O(1)-cost
 Monochrome rectangles?
 One-sided error?
- Intersection classes
- O(1)-rk₊ closed under OR?



SIGACT News Complexity Theory Column, March 2024

Structure in Communication Complexity and Constant-Cost Complexity Classes

Hamed Hatami¹ Pooya Hatami²



Abstract

Several theorems and conjectures in communication complexity state or speculate that the complexity of a matrix in a given communication model is controlled by a related analytic or algebraic matrix parameter, e.g., rank, sign-rank, discrepancy, etc. The forward direction is typically easy as the structural implications of small complexity often imply a bound on some matrix parameter. The challenge lies in establishing the reverse direction, which requires understanding the structure of Boolean matrices for which a given matrix parameter is small or large. We will discuss several research directions that align with this overarching theme.

1 Introduction

In 1979, Yao [Yao79] introduced an abstract model for analyzing communication. It quickly became apparent that the applications of this elegant paradigm go far beyond the concept of communication. Many results in communication complexity have equivalent formulations in other fields that are equally natural, and the techniques developed within this framework have proven to be powerful tools applicable across various domains. Today, communication complexity is a vibrant research area with many connections across theoretical computer science and mathematics: in learning theory, circuit design, pseudorandomness, data streaming, data structures, computational complexity, computer networks, time-space trade-offs, discrepancy theory, and property testing.

In this article, we focus on the most standard framework where a communication problem is simply a *Boolean* matrix. Formally, there are two parties, often called Alice and Bob, and a communication problem is defined by a matrix $F \in \{0,1\}^{\mathcal{X} \times \mathcal{Y}}$. Alice receives a row index $x \in \mathcal{X}$, and Bob receives a column index $y \in \mathcal{Y}$. Together, they should compute the entry F(x,y) by exchanging bits of information according to a previously agreed-on protocol tailored to F. There is

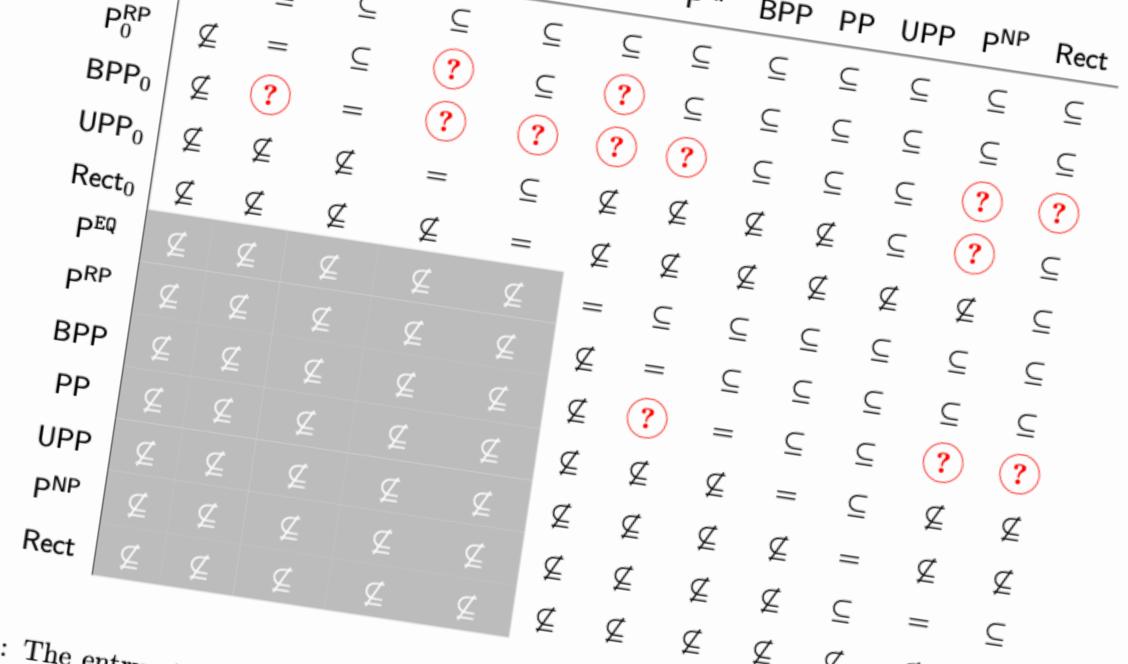
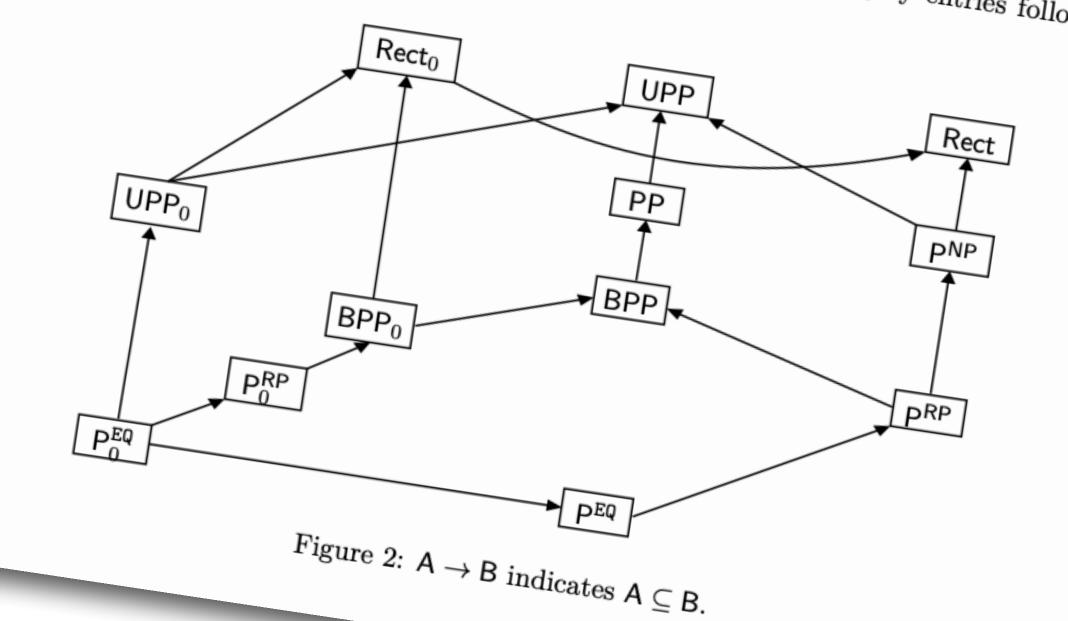


Figure 1: The entry at a row A and a column B indicates whether $A \subseteq B$ or $A \not\subseteq B$. A question via padding.

The entry at a row A and a column B indicates whether $A \subseteq B$ or $A \not\subseteq B$. A question via padding.



Thank you!