
Fast and Distributed
Mechanisms

Juho Hirvonen, Aalto University and HIIT

Helsinki Algorithms & Theory Days

Joint work with Sara Ranjbaran (Aalto)

Today’s talk

• What is a mechanism? Why and when do we want a mechanism?

• The trouble with mechanisms: a constrained design space

• Designing local mechanisms: how to implement mechanisms as fast
distributed algorithms

• Open problems and future directions

What is a mechanism?
• Mechanism is a game and an algorithm (ex: an auction)

• There is a set of agents that are strategic participants with private
information (ex: valuation for the item to be assigned)

• Agents participate by strategically revealing some of their private
information (ex: bid for the item)

• Based on the information revealed, the mechanism assigns an outcome
(ex: give the item to the highest bidder)

• Each agent gains some utility based on the outcome (ex: winner gets
item, others get nothing)

Designing mechanisms

• Primary goal (default): Maximise total utility of the agents (total welfare)

• To do this, the algorithm should somehow know the private inputs of
the agents?

• Solution concept: design truthful (incentive-compatible) mechanisms,
where revealing the truth is a dominant strategy for the agents

• Sidenote: Revelation principle states that we can always consider
mechanisms where only interaction is agents revealing their information

Example: Sealed bid auction
• Goal: assign a single indivisible item to the agent that values it the most

(to maximise welfare)

• If we just ask the agents, each will bid infinity! There must be a cost

• The classic solution: assign to the highest bidder, winner pays its own
bid (first-price auction)

• Problem: to optimise its own utility, winner must guess the second-
highest bid and bid just above it (instead of its true valuation)

• Not truthful, difficult to participate in

Example: Sealed bid auction
• To fix this, we design a new auction that ”bids optimally” for the winner:

the highest bidder gets the item and pays the second-highest bid
(second-price auction)

• Truthful:

• If agent’s true valuation is the highest bid, it gets the same utility for
every winning bid: true value - second price

• If agent’s true valuation is not the highest bid, overbidding results in
larger payment than gained utility

”The” truthful mechanism:
Vickrey-Clarke-Groves (VCG)

• Second-price auction is a special case of the (only) general truthful
mechanism (*with non-trivial guarantees)

• Each agent submits their private information, mechanism computes the
assignment that maximises total utility (!)

• The VCG-framework can be used for essentially any optimisation problem

The VCG mechanism

• Each agent gets their utility + a payment function p consisting of two
parts: 
+ The total utility of all other agents (the incentive) 
- The total utility of all other agents in the assignment that maximises
this sum (normalisation)

• Normalisation term independent of agent’s bid

• Utility + incentive = total utility: should report the truth so that the
algorithm can maximise with respect to it!

The problem with the VCG
• The VCG-mechanism is computationally infeasible for many interesting

problems

• What if we just switch the optimal solution to the best efficiently
computable solution?

• Unfortunately this does not work! Each agent wants to find the report
that maximises total utility, and this might not be the truth!

• When all agents do this in parallel, behaviour is highly unpredictable
(just like first-price auction)

Greedy mechanisms

• It is known that in certain settings, greedy algorithms can be turned into
mechanisms

• Example (from our work): maximum weight independent set (MWIS)

• Each agent v is a node in a graph and has a (private) weight w(v)

• Utility: w(v) if chosen and no neighbour chosen, 0 otherwise

• Goal is to find an independent set of large weight

Simple greedy algorithm
• The following simple algorithm is known to compute a ∆-approximation

(where ∆ = maximum degree) [Sakai et al., 2003]

Repeatedly pick the node with the largest weight into the set and remove
it along with its neighbours

• Mechanism: each agent reports its weight, find an independent set using
the greedy algorithm, replacing weights with what agents reported

• Payments: each selected agent pays the critical price = the smallest bid
that would have led to it being selected

Truthfulness

• This is again the format of the second-price auction: the mechanism
”bids optimally” for the winners

• The algorithm has to be monotone: selected nodes are still selected with
higher bids, and vice versa

• Pf. If truth is above the critical price, any bid above it will produce the
same (non-negative) utility. If truth is below the critical price, overbidding
will lead to non-positive utility.

Distributed setting

• Now each agent is an entity in a communication network

• Computation proceeds in synchronous rounds, and in each round each
agent can exchange messages with its neighbours and update its state

• At some point each agent must announce its own output

• We aim for local algorithms: number of communication rounds much
lower than the size of the network

A distributed mechanism

• To make the greedy algorithm distributed, instead of choosing the global
maximum, choose all local maxima (approximation retained)

• The main loop of the greedy algorithm can easily be implemented in a
distributed setting: agents keep checking if they are the local maximum,
join if yes, and stop if a neighbour joins

• The issue is the running time: there might be a long chain of increasing
values that takes O(n) rounds to resolve (fast sequential, slow distributed)

Dealing with long chains

• To deal with this, we discretise the values (i.e. round reported values to K
allowed values)

• If done right, the mechanism is still truthful

• Loss in the quality of the solution depending on K

Computing the payments

• If message sizes are not bounded, easy without overhead!

• T-round mechanism → Gather full T-neighbourhood to each node,
simulate mechanism with each possible bid to determine the critical
price

• Non-trivial for bounded messages!

• MWIS-mechanism: selected nodes determine the largest neighbour that
is not already blocked by some other neighbour

Our work
• We present greedy distributed mechanisms for (weighted) independent set,

dominating set, vertex cover, and coloring (their ”natural” interpretations as
mechanism design tasks) + a general framework when such mechanisms
exist (to be submitted soon)

• We also study stable matching: characterise the most general special case
that has a fast distributed mechanism, show how to break ties fairly by
sampling colourings

• https://arxiv.org/abs/2402.16532

• First examples of local mechanisms (Distributed Algorithmic Mechanism
Design has focused on global problems such as routing or leader election)

https://arxiv.org/abs/2402.16532

Implementing distributed mechanisms

• One of the advantages of distributed mechanisms would be eliminating
the need for a centralised entity that runs the whole mechanism

• In our analysis the algorithm itself is not game-theoretic, only the
reporting of the private information

• Can we make the execution also resilient against strategic behaviour?

• E.g. agent might not pass on message correctly or delete them
altogether

Greedy mechanisms and beyond
• Proving that a ”greedy” algorithm with a non-static score is monotone can

be tricky

• Lot of work in turning more convoluted greedy algorithms into
mechanisms

• In the centralised setting there are other approaches such as linear
programming

• Arguments from computational hardness of lying profitably: different
arguments for the distributed setting

Distributed tie-breaking
• In sequential mechanisms tie-breaking is essentially trivial

• In distributed mechanisms, if not done carefully, it might blow up the
running time (long chains of dependencies created by tie-breaking)

• We resolve this issue by computing a colouring: tie-breaking is consistent
and length of chains is bounded by the number of colours

• Tie-breaking problem: orient the conflict graph such that it is a DAG
and the distance reachable along the orientation from any node is
bounded

