Fast and Distributed
Mechanisms

Juho Hirvonen, Aalto University and HIIT
Helsinki Algorithms & Theory Days

Joint work with Sara Ranjbaran (Aalto)



Today'’s talk

» Whatis a mechanism? Why and when do we want a mechanism?
 The trouble with mechanisms: a constrained design space

 Designing local mechanisms: how to implement mechanisms as fast
distributed algorithms

 Open problems and future directions



What is a mechanism?

» Mechanism is a game and an algorithm (ex: an auction)

* There is a set of agents that are strategic participants with private
information (ex: valuation for the item to be assigned)

* Agents participate by strategically revealing some of their private
information (ex: bid for the item)

 Based on the information revealed, the mechanism assigns an outcome
(ex: give the item to the highest bidder)

 Each agent gains some utility based on the outcome (ex: winner gets
item, others get nothing)



Designing mechanisms

* Primary goal (default): Maximise total utility of the agents (total welfare)

* To do this, the algorithm should somehow know the private inputs of
the agents?

* Solution concept: design truthful (incentive-compatible) mechanisms,
where revealing the truth is a dominant strateqgy for the agents

o Sidenote: Revelation principle states that we can always consider
mechanisms where only interaction is agents revealing their information



Example: Sealed bid auction

Goal: assign a single indivisible item to the agent that values it the most
(to maximise welfare)

If we just ask the agents, each will bid infinity! There must be a cost

The classic solution: assign to the highest bidder, winner pays its own
bid (first-price auction)

Problem: to optimise its own utility, winner must guess the second-
highest bid and bid just above it (instead of its true valuation)

* Not truthful, difficult to participate In



Example: Sealed bid auction

* To fix this, we design a new auction that "bids optimally” for the winner:

the highest bidder gets the item and pays the second-highest bid
(second-price auction)

e Truthful:

e |If agent’s true valuation is the highest bid, it gets the same utility for
every winning bid: true value - second price

* |[f agent’s true valuation is not the highest bid, overbidding results in
larger payment than gained utility



"The” truthful mechanism:
Vickrey-Clarke-Groves (VCG)

 Second-price auction is a special case of the (only) general truthful
mechanism (*with non-trivial guarantees)

 Each agent submits their private information, mechanism computes the
assignment that maximises total utility (!)

 The VCG-framework can be used for essentially any optimisation problem



The VCG mechanism

 Each agent gets their utility + a payment function p consisting of two

parts:
+ The total utility of all other agents (the incentive)

- The total utility of all other agents in the assignment that maximises
this sum (hormalisation)

 Normalisation term independent of agent’s bid

o Utility + incentive = total utility. should report the truth so that the
algorithm can maximise with respect to it!



The problem with the VCG

 The VCG-mechanism is computationally infeasible for many interesting
problems

 What if we just switch the optimal solution to the best efficiently
computable solution?

* Unfortunately this does not work! Each agent wants to find the report
that maximises total utility, and this might not be the truth!

 When all agents do this in parallel, behaviour is highly unpredictable
(just like first-price auction)



Greedy mechanisms

It iIs known that in certain settings, greedy algorithms can be turned into
mechanisms

Example (from our work): maximum weight independent set (MWIS)
 Each agent v is a node in a graph and has a (private) weight w(v)
o Utility: w(v) if chosen and no neighbour chosen, O otherwise

 (Goal is to find an independent set of large weight



Simple greedy algorithm
* The following simple algorithm is known to compute a A-approximation

(where A = maximum degree) [Sakai et al., 2003]

Repeatedly pick the node with the largest weight into the set and remove
it along with its neighbours

 Mechanism: each agent reports its weight, find an independent set using
the greedy algorithm, replacing weights with what agents reported

 Payments: each selected agent pays the critical price = the smallest bid
that would have led to it being selected



Truthfulness

* This is again the format of the second-price auction: the mechanism
”bids optimally” for the winners

* The algorithm has to be monotone: selected nodes are still selected with
higher bids, and vice versa

o Pf. If truth is above the critical price, any bid above it will produce the
same (non-negative) utility. If truth is below the critical price, overbidding
will lead to non-positive utility.



Distributed setting

Now each agent is an entity in a communication network

Computation proceeds in synchronous rounds, and in each round each
agent can exchange messages with its neighbours and update its state

At some point each agent must announce its own output

We aim for local algorithms: number of communication rounds much
lower than the size of the network



A distributed mechanism

 To make the greedy algorithm distributed, instead of choosing the global
maximum, choose all local maxima (approximation retained)

 The main loop of the greedy algorithm can easily be implemented in a
distributed setting: agents keep checking if they are the local maximum,
join if yes, and stop if a neighbour joins

* The issue is the running time: there might be a long chain of increasing
values that takes O(n) rounds to resolve (fast sequential, slow distributed)



Dealing with long chains

 To deal with this, we discretise the values (i.e. round reported values to K
allowed values)

 |f done right, the mechanism is still truthful

* Loss in the quality of the solution depending on K



Computing the payments

* |f message sizes are not bounded, easy without overhead!

 T-round mechanism — Gather full T-neighbourhood to each node,
simulate mechanism with each possible bid to determine the critical
price

* Non-trivial for bounded messages!

« MWIS-mechanism: selected nodes determine the largest neighbour that
IS not already blocked by some other neighbour



Our work

* \We present greedy distributed mechanisms for (weighted) independent set,
dominating set, vertex cover, and coloring (their "natural” interpretations as
mechanism design tasks) + a general framework when such mechanisms
exist (to be submitted soon)

* We also study stable matching: characterise the most general special case
that has a fast distributed mechanism, show how to break ties fairly by
sampling colourings

e https://arxiv.org/abs/2402.16532

* First examples of local mechanisms (Distributed Algorithmic Mechanism
Design has focused on global problems such as routing or leader election)


https://arxiv.org/abs/2402.16532

Implementing distributed mechanisms

* One of the advantages of distributed mechanisms would be eliminating
the need for a centralised entity that runs the whole mechanism

* In our analysis the algorithm itself is not game-theoretic, only the
reporting of the private information

 Can we make the execution also resilient against strategic behaviour?

 E.g. agent might not pass on message correctly or delete them
altogether



Greedy mechanisms and beyond

* Proving that a "greedy” algorithm with a non-static score is monotone can
be tricky

* Lot of work in turning more convoluted greedy algorithms into
mechanisms

* In the centralised setting there are other approaches such as linear
programming

 Arguments from computational hardness of lying profitably: different
arguments for the distributed setting



Distributed tie-breaking

In sequential mechanisms tie-breaking is essentially trivial

In distributed mechanisms, if not done carefully, it might blow up the
running time (long chains of dependencies created by tie-breaking)

We resolve this issue by computing a colouring: tie-breaking is consistent
and length of chains is bounded by the number of colours

» Tie-breaking problem: orient the conflict graph such that it is a DAG
and the distance reachable along the orientation from any node is

bounded



