

### Model-Agnostic Approximation of Constrained

Corinna Coupette, Alipasha Montaseri and Christoph Lenzen

# of Constrained Forest Problems

Steiner Forest: Generalization of Steiner Tree

### Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected

Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected



Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected



Steiner Forest: Generalization of Steiner Tree Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected Prior Work in Congest (Lenzen and Patt-Shamir 2014):



Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected Prior Work in CONGEST (Lenzen and Patt-Shamir 2014):

 $(2 + \varepsilon)$ -Approximation in  $O(sk + \sqrt{\min\{st, n\}})$  rounds [D]  $O(\log n)$ -Approximation in  $O(\min\{s, \sqrt{n}\} + D + k)$  rounds [R]



Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected Prior Work in Congest (Lenzen and Patt-Shamir 2014):

 $(2 + \varepsilon)$ -Approximation in  $O(sk + \sqrt{\min\{st, n\}})$  rounds [D]  $O(\log n)$ -Approximation in  $O(\min\{s, \sqrt{n}\} + D + k)$  rounds [R]

Existential Lower Bound (Das Sarma et al. 2012):  $\widetilde{\Omega}(\sqrt{n})$ 



Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected Prior Work in CONGEST (Lenzen and Patt-Shamir 2014):

 $(2 + \varepsilon)$ -Approximation in  $O(sk + \sqrt{\min\{st, n\}})$  rounds [D]  $O(\log n)$ -Approximation in  $O(\min\{s, \sqrt{n}\} + D + k)$  rounds [R]

Existential Lower Bound (Das Sarma et al. 2012):  $\widetilde{\Omega}(\sqrt{n})$ Challenges:



Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected Prior Work in Congest (Lenzen and Patt-Shamir 2014):

 $(2 + \varepsilon)$ -Approximation in  $O(sk + \sqrt{\min\{st, n\}})$  rounds [D]  $O(\log n)$ -Approximation in  $O(\min\{s, \sqrt{n}\} + D + k)$  rounds [R]

Existential Lower Bound (Das Sarma et al. 2012):  $\widetilde{\Omega}(\sqrt{n})$ 

Challenges:

Model Specificity



Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected Prior Work in CONGEST (Lenzen and Patt-Shamir 2014):

 $(2 + \varepsilon)$ -Approximation in  $O(sk + \sqrt{\min\{st, n\}})$  rounds [D]  $O(\log n)$ -Approximation in  $O(\min\{s, \sqrt{n}\} + D + k)$  rounds [R]

Existential Lower Bound (Das Sarma et al. 2012):  $\Omega(\sqrt{n})$ 

Challenges:

Model Specificity  $\rightarrow$  Model Agnosticism (works across computational models)



Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected Prior Work in CONGEST (Lenzen and Patt-Shamir 2014):

 $(2 + \varepsilon)$ -Approximation in  $O(sk + \sqrt{\min\{st, n\}})$  rounds [D]  $O(\log n)$ -Approximation in  $O(\min\{s, \sqrt{n}\} + D + k)$  rounds [R]

Existential Lower Bound (Das Sarma et al. 2012):  $\Omega(\sqrt{n})$ 

Challenges:

 $\rightarrow$  Model Agnosticism (works across computational models) Model Specificity **Existential Optimality** 



Steiner Forest: Generalization of Steiner Tree

Classic Input: Components  $\{V_i \mid i \in [k]\}$  to be connected Prior Work in CONGEST (Lenzen and Patt-Shamir 2014):

 $(2 + \varepsilon)$ -Approximation in  $O(sk + \sqrt{\min\{st, n\}})$  rounds [D]  $O(\log n)$ -Approximation in  $O(\min\{s, \sqrt{n}\} + D + k)$  rounds [R]

Existential Lower Bound (Das Sarma et al. 2012):  $\Omega(\sqrt{n})$ 

Challenges:

 $\rightarrow$  Model Agnosticism (works across computational models) Model Specificity Existential Optimality  $\rightarrow$  Universal Optimality (best on given topology)



 $\approx$  Problems on weighted graphs with forests as solutions

 $\approx$  Problems on weighted graphs with forests as solutions

Primal IP

$$\min \sum_{e \in E} c(e) x_e$$
  
s.t.  $x(\delta(S)) \ge f(S) \quad \forall \emptyset \neq S \subset V$   
 $x_e \in \{0, 1\} \quad \forall e \in E$ 

 $\approx$  Problems on weighted graphs with forests as solutions

Primal IP



 $\approx$  Problems on weighted graphs with forests as solutions

Primal IP



 $\approx$  Problems on weighted graphs with forests as solutions

Primal IP



 $\approx$  Problems on weighted graphs with forests as solutions

Primal IP

Dual LP



 $\approx$  Problems on weighted graphs with forests as solutions

Primal IP

Dual LP





We focus on CFPs with *proper* functions f (zero, symmetry, disjointness)



Steiner Forest:  $f(S) = 1 \Leftrightarrow \emptyset \neq S \cap V_i \neq V_i$  for some  $i \in [k]$ 

Input: Graph with edge costs c, proper forest function f



Input: Graph with edge costs c, proper forest function fOutput: Forest F and lower-bound value LB



Input: Graph with edge costs c, proper forest function fOutput: Forest F and lower-bound value LB

Procedure:



Input: Graph with edge costs c, proper forest function fOutput: Forest F and lower-bound value LB

Procedure:

Start with each node v as its own component  $C = \{v\}$ 



Input: Graph with edge costs c, proper forest function fOutput: Forest F and lower-bound value LB

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1) Increase dual variables of all edges incident with active components, adding to LB



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)Increase dual variables of all edges incident with active components, adding to LB

Once a dual variable y(e) becomes tight, add e to F



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)


Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)

Increase dual variables of all edges incident with active components, adding to LB Once a dual variable y(e) becomes tight, add e to FMerge components represented by endpoints of e



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)

Increase dual variables of all edges incident with active components, adding to LB Once a dual variable y(e) becomes tight, add e to FMerge components represented by endpoints of e



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)

Increase dual variables of all edges incident with active components, adding to LB Once a dual variable y(e) becomes tight, add e to FMerge components represented by endpoints of e



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)Increase dual variables of all edges incident with active components, adding to LB Once a dual variable y(e) becomes tight, add e to FMerge components represented by endpoints of *e* Remove unnecessary edges from F



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)Increase dual variables of all edges incident with active components, adding to LB Once a dual variable y(e) becomes tight, add e to FMerge components represented by endpoints of *e* Remove unnecessary edges from F



Input: Graph with edge costs *c*, proper forest function *f* Output: Forest *F* and lower-bound value *LB* 

Procedure:

Start with each node v as its own component  $C = \{v\}$ While there are active components (f(C) = 1)

Increase dual variables of all edges incident with active components, adding to LB Once a dual variable y(e) becomes tight, add e to FMerge components represented by endpoints of *e* Remove unnecessary edges from F

Approximation Guarantee: 2 - 2/t



Challenge

Goemans-Williamson

Corinna Coupette · Constrained Forest Problems

### Our Approach

Challenge

Goemans-Williamson

Solution-Set Construction

Filtering

Corinna Coupette · Constrained Forest Problems

### Our Approach

### Incremental



Corinna Coupette · Constrained Forest Problems

### Our Approach

### Incremental

Approximate



Corinna Coupette · Constrained Forest Problems

### Our Approach

### Incremental

Approximate

Deferred (Each Phase)

Start



Start

Phase 1





Start

Phase 1

Phase 2







Start

Phase 1

Phase 2







Phase 3







7

7

Initialization



7



7









(1) Edge Deletion







Corinna Coupette · Constrained Forest Problems

### (1) SSSP Cover















## Model-Agnostic Specification Approximation Guarantee: $2 + \varepsilon$





## Model-Agnostic Specification Approximation Guarantee: $2 + \varepsilon$






Corinna Coupette · Constrained Forest Problems





Corinna Coupette · Constrained Forest Problems





Corinna Coupette · Constrained Forest Problems





Corinna Coupette · Constrained Forest Problems

# Hardness is isolated! Problem-Specific ≈ Transshipment Root-Path Selection

Minimum Spanning Tree



Corinna Coupette · Constrained Forest Problems

# Hardness is isolated! Problem-Specific ≈ Transshipment Root-Path Selection

Minimum Spanning Tree



Corinna Coupette · Constrained Forest Problems



Model-agnostic!



Corinna Coupette · Constrained Forest Problems





Corinna Coupette · Constrained Forest Problems



#### Model-Specific Implementation: CONGEST Toward universal optimality, $(2 + \varepsilon)$ -approximation with... we can replace $\sqrt{n} + D$ by $T^{PA} n^{o(1)}$



Corinna Coupette · Constrained Forest Problems

## Problem-Specific $\widetilde{O}((\sqrt{n} + D)\varepsilon^{-2})$ [D] **Root-Path Selection** Minimum Spanning Tree $\widetilde{O}(\sqrt{n} + D)$ [D]

Interestingly, CONGEST complexity differs depending on the SF input representation!

Interestingly, CONGEST complexity differs depending on the SF input representation!

| Problem | Input                                                                                              | LB                                   | APX                 |   |
|---------|----------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|---|
| SF-IC   | Component identifiers $\lambda \colon V \to [k] \cup \{\bot\};$<br>node <i>v</i> knows $\lambda_v$ | $\widetilde{\Omega}(Q+k) \mathbf{R}$ | $(2+\varepsilon)$ D | Ĉ |

Complexity

 $\widetilde{O}(\min\{T^{PA}n^{o(1)},\sqrt{n}+D\}+k)$ 

Interestingly, CONGEST complexity differs depending on the SF input representation!

| Problem | Input                                                                         | LB                              | APX                 |                 |
|---------|-------------------------------------------------------------------------------|---------------------------------|---------------------|-----------------|
| SF-IC   | Component identifiers $\lambda \colon V \to [k] \cup \{\bot\};$               | $\widetilde{\Omega}(Q+k) \ge 0$ | $(2+\varepsilon)$ D | $\widetilde{C}$ |
| SF-CIC  | node $v$ knows $\lambda_v$<br>As in SF–IC, but node $v$ knows $\lambda_v$ and | $\widetilde{\Omega}(Q+k)$ D     | $(2+\varepsilon)$ R |                 |
|         | $  \{ u \in V \mid \lambda_u = \lambda_v \}  $                                |                                 |                     |                 |

Complexity

 $\tilde{O}(\min\{T^{PA}n^{o(1)},\sqrt{n}+D\}+k)$ 

 $\widetilde{O}(n^{2/3} + D)$ 

Interestingly, CONGEST complexity differs depending on the SF input representation!

| Problem | Input                                                                                              | LB                                   | APX                 |             |
|---------|----------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-------------|
| SF-IC   | Component identifiers $\lambda \colon V \to [k] \cup \{\bot\};$<br>node <i>v</i> knows $\lambda_v$ | $\widetilde{\Omega}(Q+k) \mathbf{R}$ | $(2+\varepsilon)$ D | $\tilde{c}$ |
| SF-CIC  | As in SF–IC, but node $v$ knows $\lambda_v$ and $ \{ u \in V \mid \lambda_u = \lambda_v \} $       | $\widetilde{\Omega}(Q+k)$ D          | $(2+\varepsilon)$ R |             |
| SF-CR   | Each node v is given $\mathcal{R}_{v} \subseteq V \setminus \{v\}$                                 | $\widetilde{\Omega}(Q+t) \mathbf{R}$ | $(2+\varepsilon)$ D | $\tilde{c}$ |

Complexity  $\widetilde{O}(\min\{T^{PA}n^{o(1)},\sqrt{n}+D\}+k)$  $\widetilde{O}(n^{2/3} + D)$  $\widetilde{O}(\min\{T^{PA}n^{o(1)},\sqrt{n}+D\}+t)$ 

Interestingly, CONGEST complexity differs depending on the SF input representation!

| Problem | Input                                                                                                                                                                                           | LB                                   | APX                 |             |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-------------|
| SF-IC   | Component identifiers $\lambda \colon V \to [k] \cup \{\bot\};$<br>node <i>v</i> knows $\lambda_v$                                                                                              | $\widetilde{\Omega}(Q+k) \ge 0$      | $(2+\varepsilon)$ D | Ĉ           |
| SF-CIC  | As in SF–IC, but node $v$ knows $\lambda_v$ and $ \{u \in V \mid \lambda_u = \lambda_v\} $                                                                                                      | $\widetilde{\Omega}(Q+k)$ D          | $(2+\varepsilon)$ R |             |
| SF-CR   | Each node $v$ is given $\mathcal{R}_{v} \subseteq V \setminus \{v\}$                                                                                                                            | $\widetilde{\Omega}(Q+t) \mathbf{R}$ | $(2+\varepsilon)$ D | $\tilde{c}$ |
| SF-SCR  | $ \begin{array}{l} \mathcal{R}_{\mathcal{G}} \subseteq \binom{V}{2}; \text{ node } v \text{ knows} \\ \mathcal{R}_{\mathcal{G}} = \{ u \in V \mid \{u, v\} \in \mathcal{R}_{v} \} \end{array} $ | $\widetilde{\Omega}(Q+t)$ D          | $(2+\varepsilon)$ R |             |

Complexity  $\widetilde{O}(\min\{T^{PA}n^{o(1)},\sqrt{n}+D\}+k)$  $\widetilde{O}(n^{2/3} + D)$  $\widetilde{O}(\min\{T^{PA}n^{o(1)},\sqrt{n}+D\}+t)$ 

 $\widetilde{O}(\min\{T^{PA}n^{o(1)},\sqrt{n}+D\})$ 

Corinna Coupette · Constrained Forest Problems

#### Our Main Contribution: Shell-Decomposition Algorithm

#### Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs

#### Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST

Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST

**Open Questions** 

Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST

**Open Questions** 

Problem Classes

Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST

**Open Questions** 

Problem Classes

CFPs on Hypergraphs?

Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST

**Open Questions** 

Problem Classes

CFPs on Hypergraphs?

CFPs with Non-Proper Forest Functions?

Corinna Coupette · Constrained Forest Problems

Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST

**Open Questions** 

Problem Classes

CFPs on Hypergraphs? CFPs with Non-Proper Forest Functions? Universal Optimality

Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST **Open Questions** 

Problem Classes

CFPs on Hypergraphs?

CFPs with Non-Proper Forest Functions?

Universal Optimality

Hardness of *Disjoint* Aggregation (analogous to *Partwise* Aggregation)?

Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST **Open Questions** Problem Classes CFPs on Hypergraphs?

CFPs with Non-Proper Forest Functions?

Universal Optimality

Hardness of *Disjoint* Aggregation (analogous to *Partwise* Aggregation)? Analog to Universal Optimality in Multi-Pass Streaming?

## Thank You!

Our Main Contribution: Shell-Decomposition Algorithm General Framework for Model-Agnostic Approximation of CFPs Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in CONGEST

**Open Questions** 

Problem Classes

CFPs on Hypergraphs?

CFPs with Non-Proper Forest Functions?

Universal Optimality

Hardness of *Disjoint* Aggregation (analogous to *Partwise* Aggregation)? Analog to Universal Optimality in Multi-Pass Streaming?

