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Prior Work in Congest (Lenzen and Patt-Shamir 2014):

(2 + ε)-Approximation in O(sk +
√︁
min{st, n}) rounds [D]

O(log n)-Approximation in O(min{s,
√
n} +D + k) rounds [R]

Existential Lower Bound (Das Sarma et al. 2012): Ω̃(
√
n)

Challenges:
Model Specificity
Existential Optimality

→ Model Agnosticism (works across computational models)
→ Universal Optimality (best on given topology)
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xe ∈ {0, 1} ∀ e ∈ E

max
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S⊂V

f (S)yS

s.t.
∑︁

S:e∈δ (S )
yS ≤ c(e) ∀ e ∈ E

yS ≥ 0

Primal IP Dual LP

≈ Problems on weighted graphs with forests as solutions

We focus on CFPs with proper functions f (zero, symmetry, disjointness)
Steiner Forest: f (S) = 1 ⇔ ∅ ≠ S ∩ Vi ≠ Vi for some i ∈ [k]
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The Goemans-Williamson Algorithm

Output: Forest F and lower-bound value LB
Input: Graph with edge costs c, proper forest function f

Start with each node v as its own component C = {v}
While there are active components (f (C) = 1)

Increase dual variables of all edges incident with active components, adding to LB
Once a dual variable y(e) becomes tight, add e to F
Merge components represented by endpoints of e

Remove unnecessary edges from F

Procedure:

Approximation Guarantee: 2 − 2/t
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Toward Model Agnosticism

Challenge Our ApproachGoemans-Williamson

ApproximateExactPairwise Distance Computations

IncrementalFilteringSolution-Set Construction

Deferred (Each Phase)Many (Each Edge)Forest-Function Evaluation
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Õ(ε−1) Iterations

Complexity: Õ
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Problem-Specific

Hardness is isolated!Approximation Guarantee: 2 + ε

≈ Transshipment

≈ SSSP

Model-agnostic!
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Model-Specific Implementation: Congest

Start

Candidate-Merge Identification

Termination
No

Minimum Spanning TreeEdge-Cost Reduction

(Approximate) Set-Source
Shortest-Path Forest

Forest-Function Evaluation Root-Path Selection

Yes

Active Component Left?

(2 + ε)-approximation with. . .

Problem-Specific

Local ComputationsÕ((
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√
n +D)ε−2) [D]
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we can replace
√
n +D by TPAno(1)

Toward universal optimality,



Corinna Coupette · Constrained Forest Problems 10

Problem-Specific Implementation: Steiner Forest in Congest

Interestingly, Congest complexity differs depending on the SF input representation!



Corinna Coupette · Constrained Forest Problems 10

Problem-Specific Implementation: Steiner Forest in Congest

Problem Input LB APX Complexity

SF–IC Component identifiers λ : V → [k] ∪ {⊥};
node v knows λv

Ω̃(Q + k) R (2 + ε) D Õ(min{TPAno(1) ,
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√
n +D})

Interestingly, Congest complexity differs depending on the SF input representation!



Corinna Coupette · Constrained Forest Problems 10

Problem-Specific Implementation: Steiner Forest in Congest

Problem Input LB APX Complexity

SF–IC Component identifiers λ : V → [k] ∪ {⊥};
node v knows λv

Ω̃(Q + k) R (2 + ε) D Õ(min{TPAno(1) ,
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CFPs on Hypergraphs?
CFPs with Non-Proper Forest Functions?

Universal Optimality
Hardness of Disjoint Aggregation (analogous to Partwise Aggregation)?
Analog to Universal Optimality in Multi-Pass Streaming?

Our Main Contribution: Shell-Decomposition Algorithm
General Framework for Model-Agnostic Approximation of CFPs
Instantiated in 3 Models for 3 Problems, improving SOTA esp. for SF in Congest

Thank You!

Open Questions
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