
Motivation: QC needs error-correction
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Physical (raw) qubits 

● not well behaved
● faulty - affected by 

environmental noise and 
manufacturing inconsistencies

● solitary (not many) on a device

Error-corrected qubits

● controlling the risks 
● not faulty - or controlled 

failure rates
● difficult to achieve due to lack 

of hardware qubits, not 
scalable classical software 
etc.
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A Brief Introduction to Surface Codes





















Scalable (Machine Learning) Decoders

under consideration at PRX Quantum



ML Decoders: Introduction and Motivation
Optimal Decoding of QECC is a hard problem [1] 

Belief propagation (BP)  - one of the best-known classical decoding algorithms

● message passing between data nodes and check nodes
● the algorithm looks for qubit-wise most likely error
● converges when predicted syndrome == actual syndrome
● fast, but not good for surface codes  -> BP + Ordered Statistics Decoder[5]

Are there more complex forms of BP (message passing) decoders?

● Neural-BP[2]  
● Generalized BP[3]
● Can we learn the BP algorithm? Yes -> GNN (see next slides)

Neural Network (NN) decoding has constant decoding runtime 

Limitations of previous NN based decoding approaches:

● Different NN architectures for different code types
● Retain for each code distance 
● there is a GNN decoder [4], but it does not work like we want it

Tanner graph for surface code of 
distance 3: RED vertices are check 
nodes, GREEN vertices are data nodes

[1] https://arxiv.org/abs/1310.3235
[2] https://arxiv.org/abs/1811.07835
[3] https://arxiv.org/abs/2212.03214 
[4] https://arxiv.org/abs/2307.01241
[5] https://arxiv.org/abs/2005.07016
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O(n3)

We want to build a NN based decoder

● which is learning fast and which can operate fast
● works for LDPC codes – also the surface code

We present a decoder that is learning the constraints of QECC decoding

https://arxiv.org/abs/1310.3235
https://arxiv.org/abs/1811.07835
https://arxiv.org/abs/2212.03214
https://arxiv.org/abs/2307.01241
https://arxiv.org/abs/2005.07016


Why ML Decoders?

iOlius, A. D., Fuentes, P., Orús, R., Crespo, P. M., & Martinez, J. E. (2023). 
Decoding algorithms for surface codes. arXiv preprint arXiv:2307.14989.

ML Decoding has linear time (although the scaling 
of the models with code distance is not known)



Why ML Decoders?
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ML Decoding has linear time (although the scaling 
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What the goal is:

What the state of the art is:



Astra: A Graph Neural Network (GNN) Decoder
Learning BP to Satisfy Constraints

red: input vertices in GNN
blue: output
green: node state
messages are sent along the edges

● edges are 
constraints 
necessary for the 
solution

● vertices are 
forming constraint 
pairs
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Decoding works like 
solving Sudoku – 
solve the 
constraints

Ref [1]

[1] https://arxiv.org/abs/1711.08028

https://arxiv.org/abs/1711.08028


Astra: A Graph Neural Network (GNN) Decoder
The Sudoku analogy - Learning BP

red: input vertices in GNN
blue: output
green: node state
messages are sent along 
the edges

● edges are constraints 
necessary for the 
solution

● vertices are forming 
constraint pairs
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Red = filled values = 
syndromes
Green = to fill = 
errors / data qubits

Tanner graph for 
surface code of 
distance 3: RED 
vertices are 
check nodes, 
GREEN vertices 
are data nodes



Astra as replacement of BP+OSD for Surface code
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Extrapolated Astra+OSD vs BP+OSD for Surface code



Astra as replacement of BP+OSD for IBM’s BB code
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Extrapolated Astra+OSD vs BP+OSD for IBM’s BB code
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Very Fast Compilers (for Lattice Surgery)



● Start with a lattice of NN connected qubits that can 
operate a Surface Code Cycle

● This lattice is partitioned into tiles.
● A tile can hold a patch, which encodes a logical qubit in 

a planar code
● Patches have different kinds of boundaries that are 

used to perform multibody measurements
● Unused lattice can be used as routing to carry out 

measurements among patches with no shared boundary
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Our Challenge: Logical Computations at scale
100s to 1000s of logical qubits

https://github.com/latticesurgery-com/
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LS Compiler Architecture
A pluggable pipeline in decoupled stages, with options and text-based intermediate representations

Pre-processing is decoupled from routing on the lattice 
thanks to an intermediate representation of Lattice 
Surgery Instructions and a Layout Specification



Very Large Scale Circuit Optimizer

under consideration at PR Letters



Motivation
No software can handle gate optimization in 
randomly chosen circuit locations for 
circuits with millions (billions?) of gates!

Benchmarked state-of-the-art
optimizers with circuits 
of 1 million templates.

Optimizer Time

Cirq 1.2.0 > 20 hours

Tket 1.21.0 ~ 1 min 

PostgreSQL 14 ?

Example of 
practical circuit 

sizes

Why random?  circuit optimisation is a combinatorial (not sequential) problem. 
In-memory optimizers are slow for random memory access! Databases are faster.
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Methods
We consider four types of gate templates:

● Single-qubit gate cancellations

● Two-qubit gate cancellations

● Base changes

● Commutations 
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Generating Synthetic Benchmark Circuits

1. Start from empty circuit - identity on all 
qubits

2. For nr in range(LARGE_NUMBER)
a. Select random qubit(s)
b. Insert pairs of cancelling gates

i. Hadamard gates
ii. CNOTs

e.g. LARGE_NUMBER = 1 million (see next slides)

Results: Random Synthetic Circuits

● Our tool is faster than |tket>
○ for more than 10k gates
○ speed-up increases with circuit size

considered the fastest 
optimizer (written in 

Rust)
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Results: Multi-threaded performance

Type-1 Type-2

Our benchmark circuit contains 1 million templates of either Type-1 or Type-2
● 2 million gates when using type-1
● 5 million gates when using type-2 29
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Conclusion: Executing algorithms/circuits of 100 
qubits and 1M gates requires more work
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1. Decoders
a. Non-ML Decoders can be sped up by pipelining and parallelization 

https://arxiv.org/abs/2205.09828 
b. GNN Decoders are learning the messages and algorithms of a message passing 

https://arxiv.org/pdf/2408.07038 
2. Large scale compilation and optimization

a. Engineering Reward Functions seems to speed/improve RL https://arxiv.org/abs/2311.12498 
b. Compression of RL states with autoencoders https://arxiv.org/abs/2303.03280 
c. Some tricks can massively improve the compilation https://arxiv.org/abs/2408.08265 
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