Jukka Suomela Aalto University

Round Elimination

Meta-algorithmics

- Normal algorithms example:
 - input: graph G
 - output: coloring of graph G
- Meta-algorithms example:
 - input: **computational problem** P
 - output: **algorithm** for solving P

How to represent problems or algorithms?

- Basic idea already used by Linial (1987)
 - "it is not possible to 3-color cycles in o(log* n) rounds"
- Until 2015 it was thought this is an ad-hoc trick that only works for graph coloring
- Lots of new applications since 2016
- General idea formalized in 2019

Proving lower bounds

- Claim: solving problem *X* takes ≥ 5 rounds
- Equivalent: any 4-round algorithm A fails to solve problem X
- How to show something like this?
 - huge number of possible 4-round algorithms

Proving lower bounds

- Easy to do directly: showing that 0-round algorithms fail
- Hard to do directly: showing that 4-round algorithms fail
- Solution: round elimination technique

Assume: A_0 solves problem X_0 in 4 rounds

- $\rightarrow A_1$ solves problem $X_1 = \text{re}(X_0)$ in 3 rounds
- $\rightarrow A_2$ solves problem $X_2 = \text{re}(X_1)$ in 2 rounds
- $\rightarrow A_3$ solves problem $X_3 = \text{re}(X_2)$ in 1 round
- $\rightarrow A_4$ solves problem $X_4 = \text{re}(X_3)$ in 0 rounds

Assume: A_0 solves problem X_0 in 4 rounds

- $\rightarrow A_1$ solves problem $X_1 = \text{re}(X_0)$ in 3 rounds
- $\rightarrow A_2$ solves problem $X_2 = \text{re}(X_1)$ in 2 rounds
- $\rightarrow A_3$ solves problem $X_3 = \text{re}(X_2)$ in 1 round
- $\rightarrow A_4$ solves problem $X_4 = \text{re}(X_3)$ in 0 rounds

Assume: A_0 solves problem X_0 in 4 rounds $\rightarrow A_1$ solves problem $X_1 = \operatorname{re}(X_0)$ in 3 rounds

- $\rightarrow A_2$ solves problem $X_2 = \text{re}(X_1)$ in 2 rounds
- $\rightarrow A_3$ solves problem $X_3 = \text{re}(X_2)$ in 1 round
- $\rightarrow A_4$ solves problem $X_4 = \text{re}(X_3)$ in 0 rounds

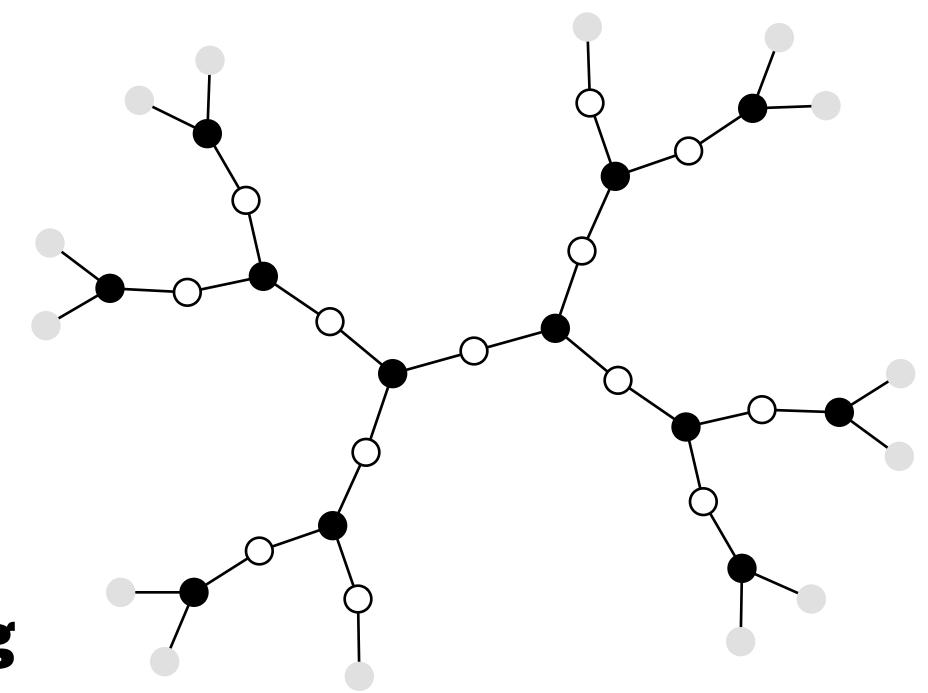
Round elimination turns problem X_0 into a new problem X_1 that can be solved 1 round faster

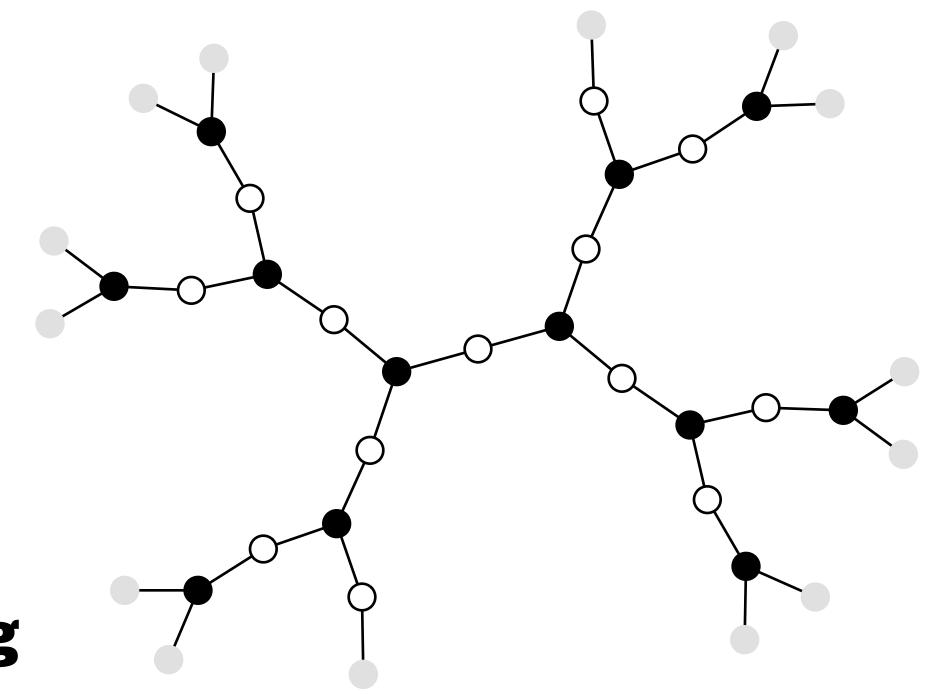
Round elimination turns problem X_0 into a new problem X_1 that can be solved 1 round faster

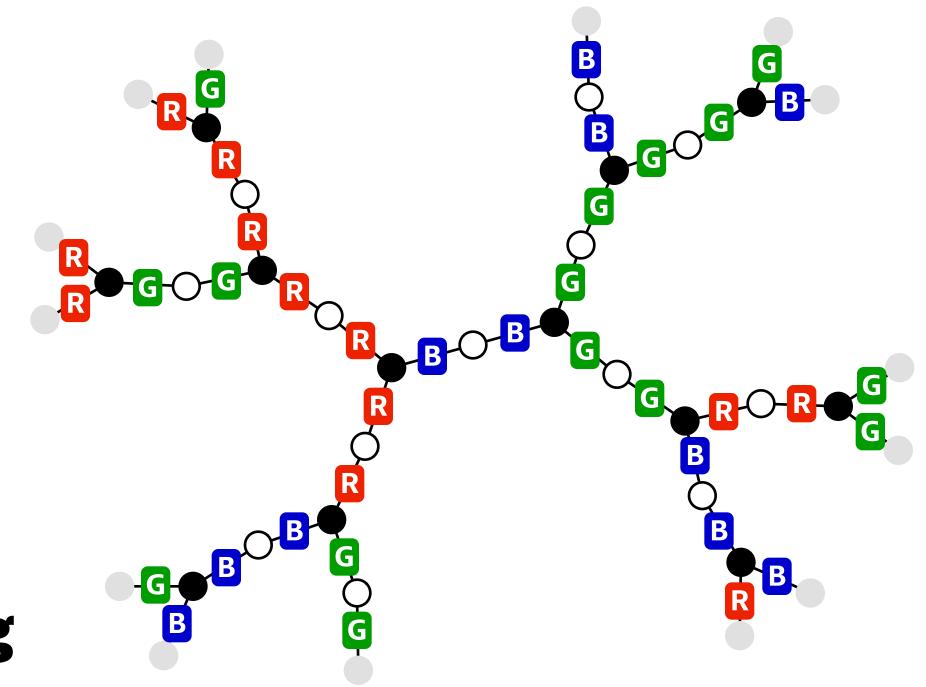
Bipartite locally verifiable problems

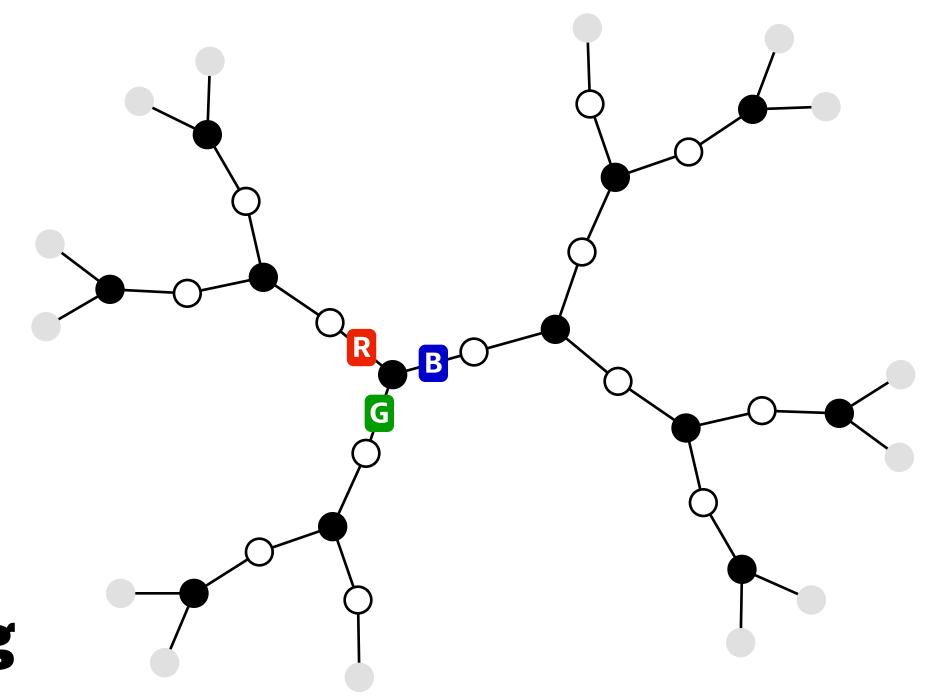
Toy example

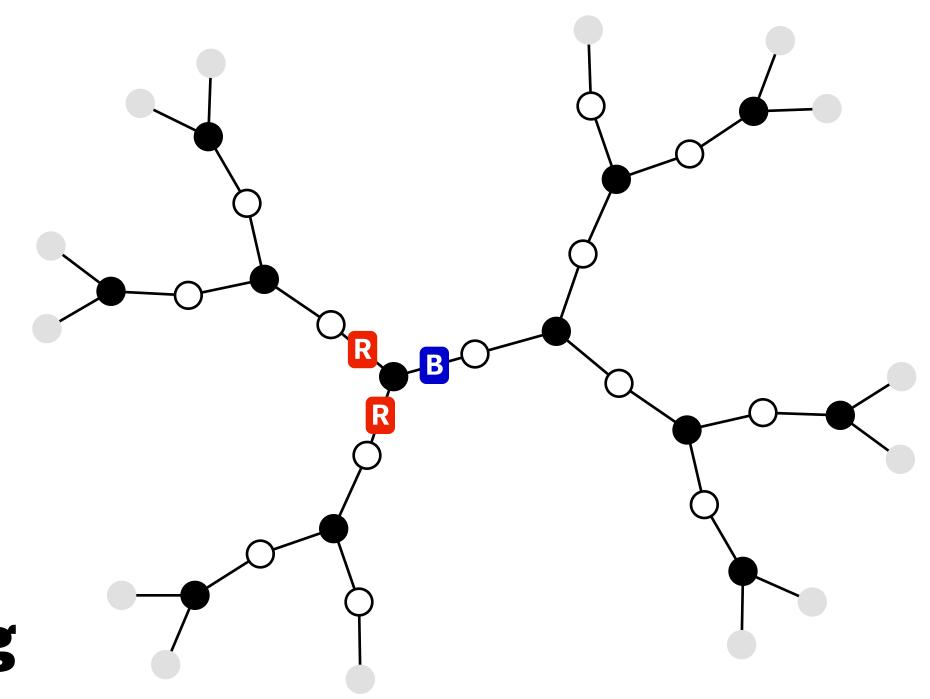
- "Weak 3-labeling" in 3-regular graphs
- Goal:
 - label edges with R, G, B
 - each node incident to at least two different colors
- First step: encode this as a bipartite locally verifiable problem

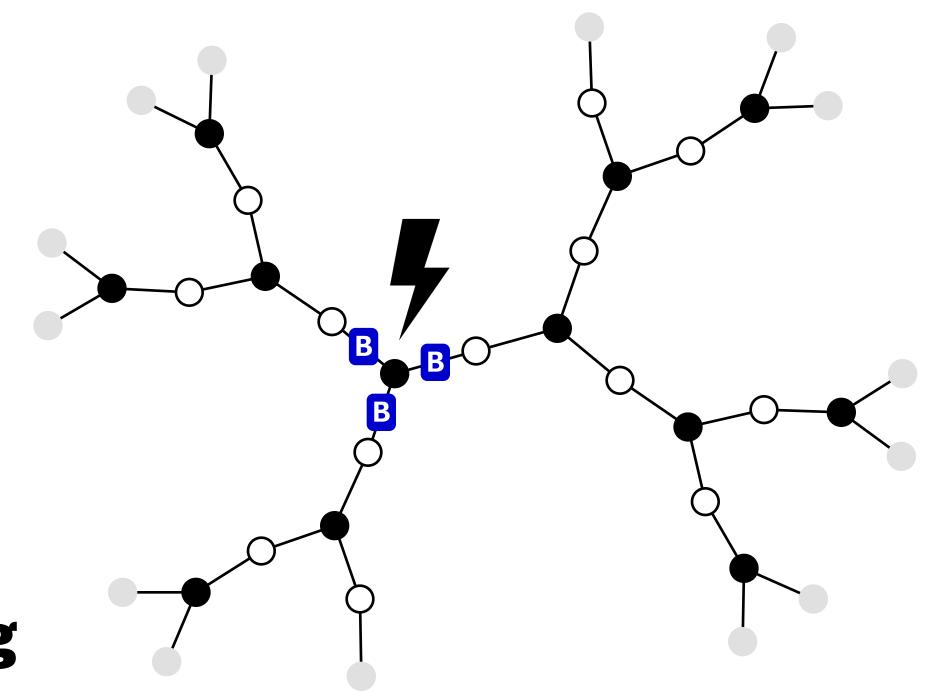


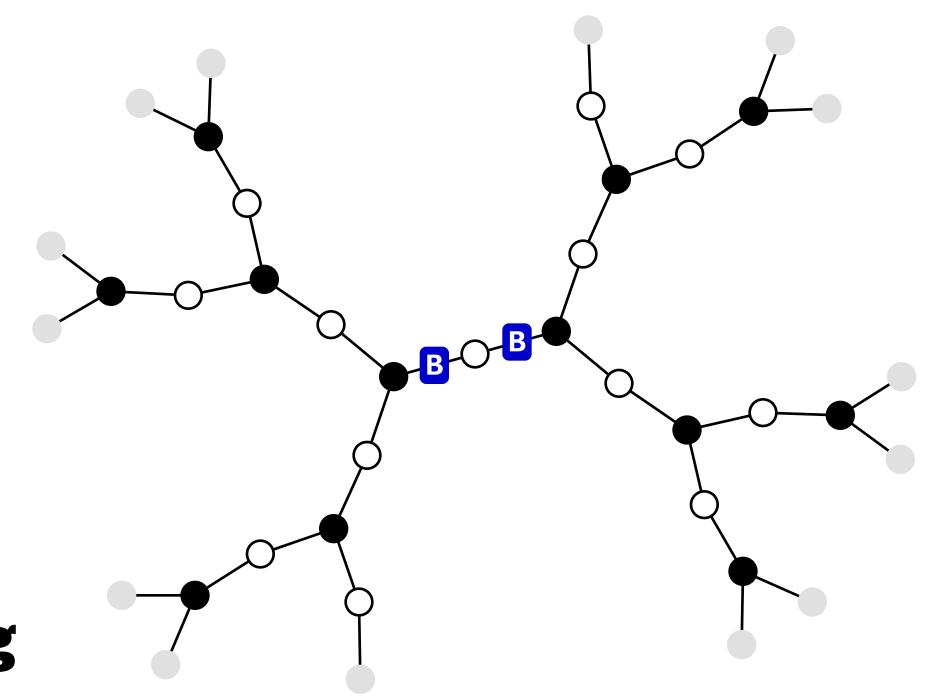


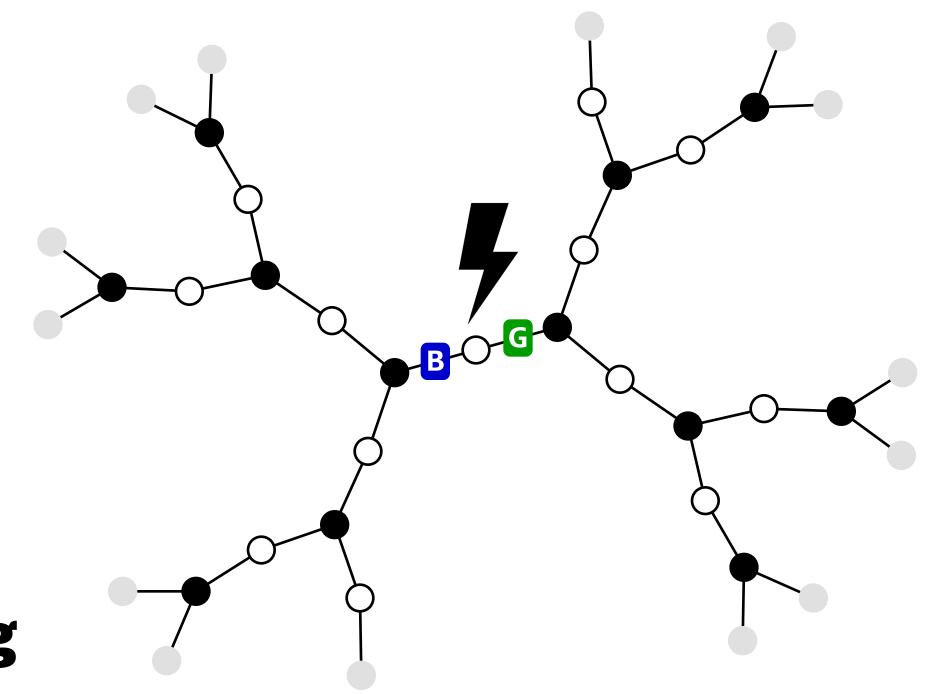






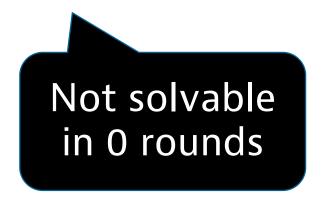


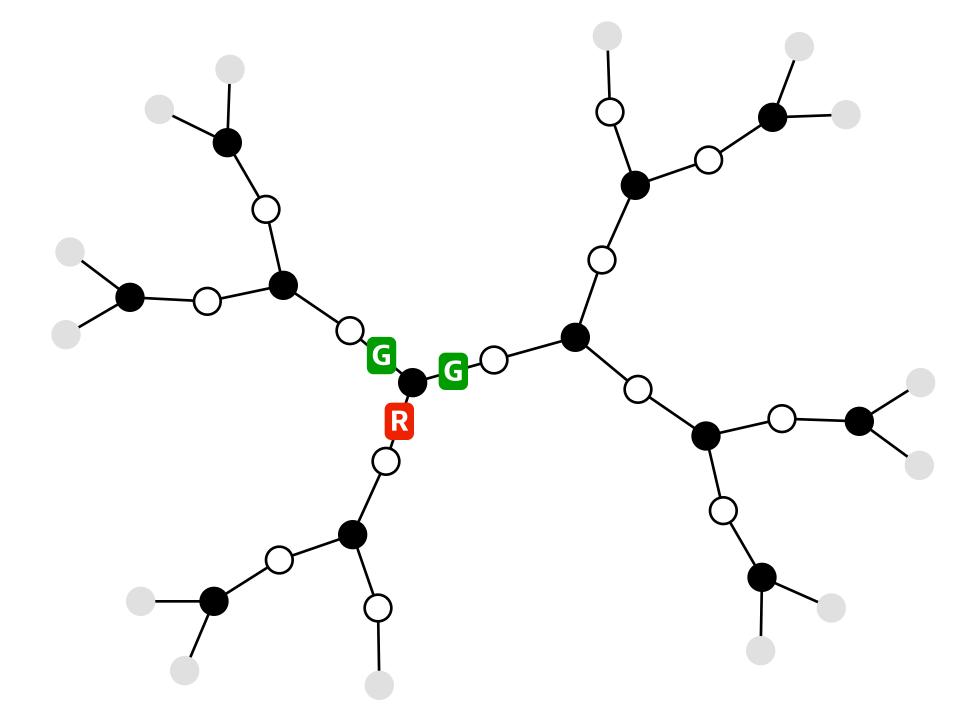


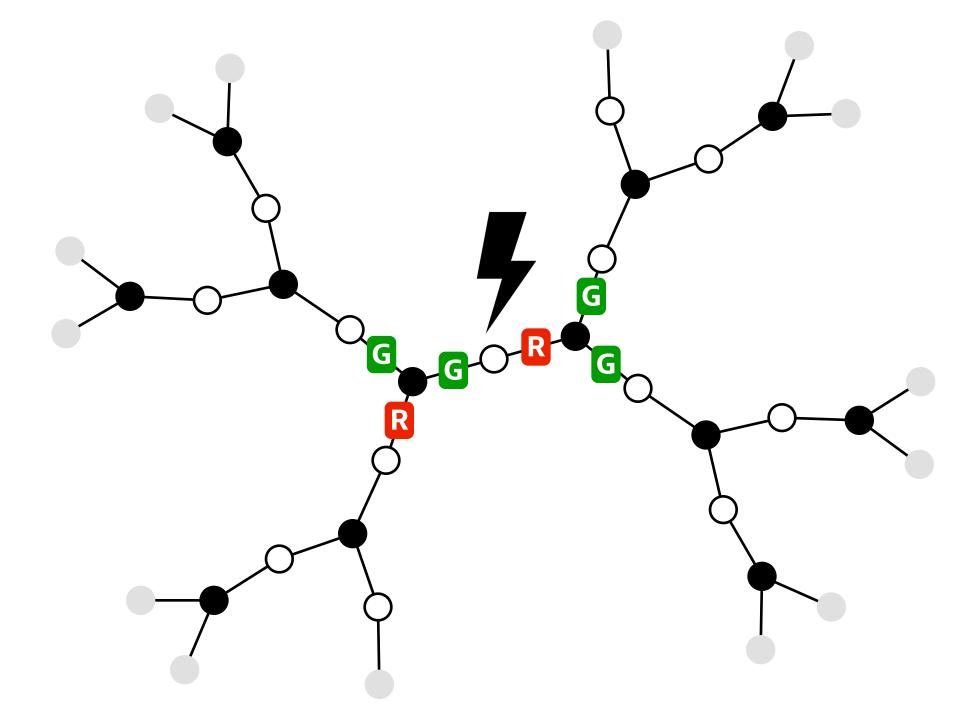


- active (deg 3): not all **R**, not all **G**, not all **B**
- passive (deg 2): equality

- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

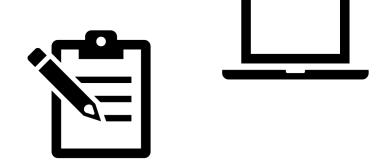






- active (deg 3): not all **R**, not all **G**, not all **B**
- passive (deg 2): equality

$$X_1 = re(X_0)$$
:



- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

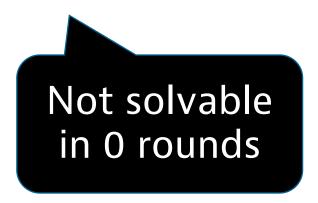
$X_1 = re(X_0)$: labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

$X_1 = re(X_0)$: labels R, G, B

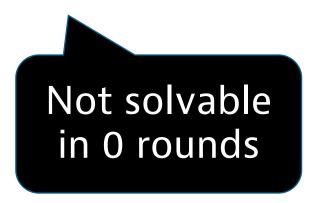
- active (deg 2): equality
- passive (deg 3): not all **R**, not all **G**, not all **B**



- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

$X_1 = re(X_0)$: labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B



Not solvable in 1 round

- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

 $X_1 = re(X_0)$: labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all **R**, not all **G**, not all **B**

 $X_2 = re(X_1)$:

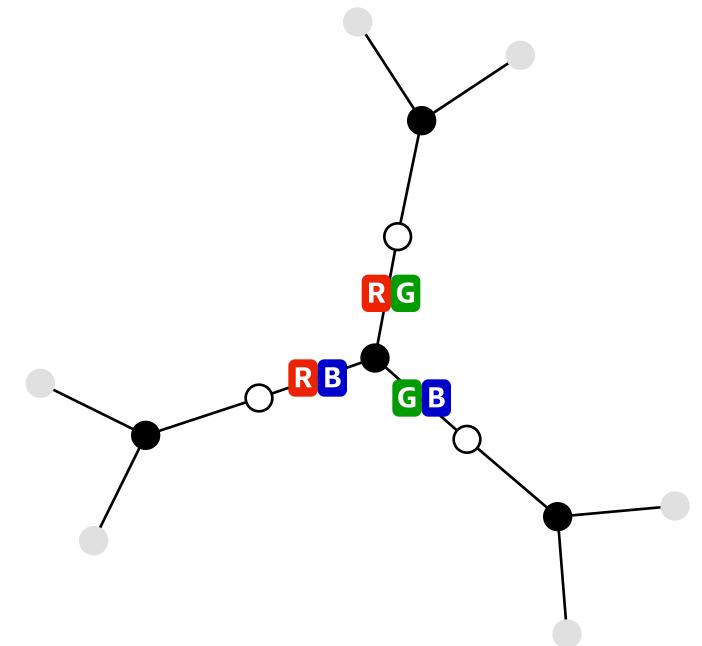
- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

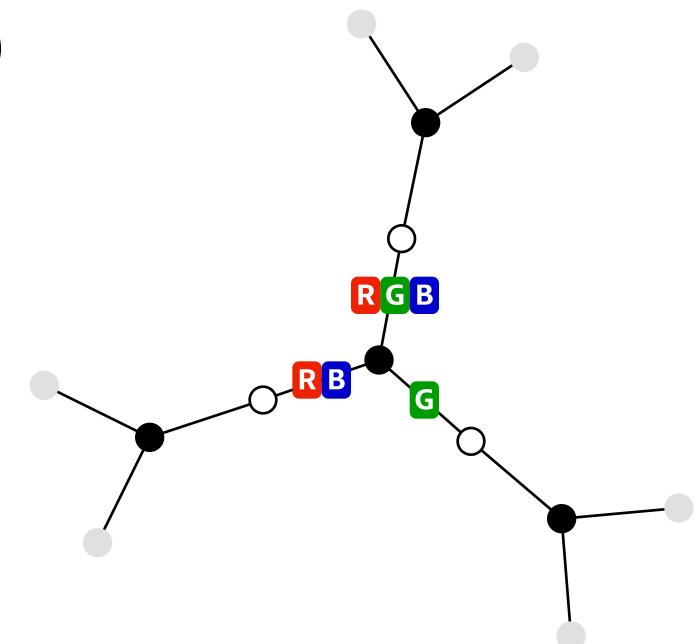
$X_1 = re(X_0)$: labels R, G, B

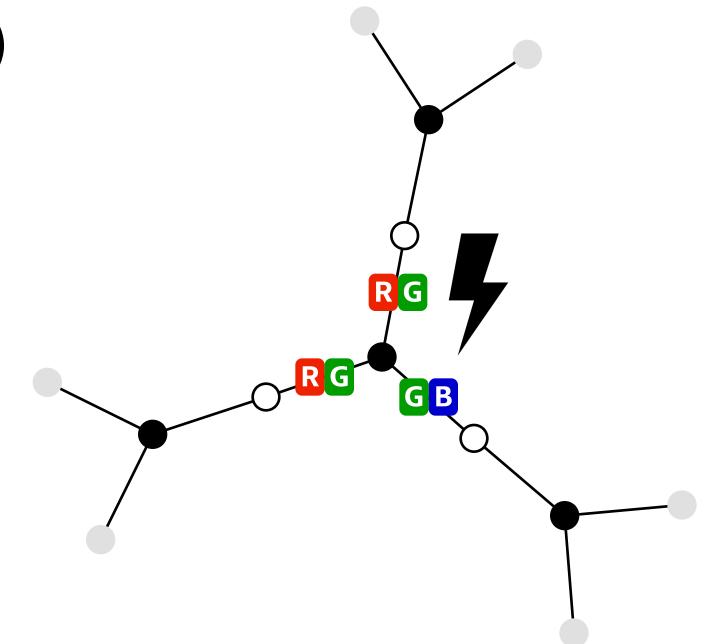
- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

 $X_2 = re(X_1)$: labels R, G, B, RG, RB, GB, RGB

- X₀: labels R, G, B
 - active (deg 3): not all R, not all G, not all B
 - passive (deg 2): equality
- $X_1 = re(X_0)$: labels R, G, B
 - active (deg 2): equality
 - passive (deg 3): not all R, not all G, not all B
- $X_2 = re(X_1)$: labels R, G, B, RG, RB, GB, RGB
 - active (deg 3): empty intersection







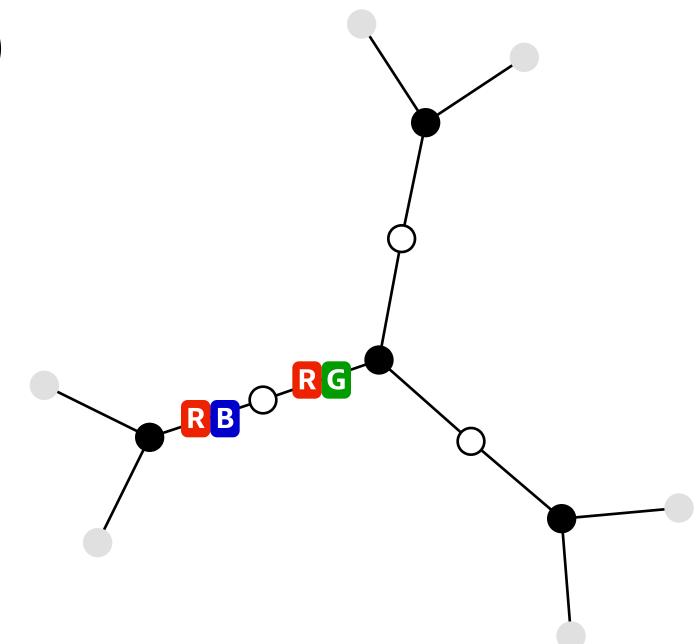
- active (deg 3): not all **R**, not all **G**, not all **B**
- passive (deg 2): equality

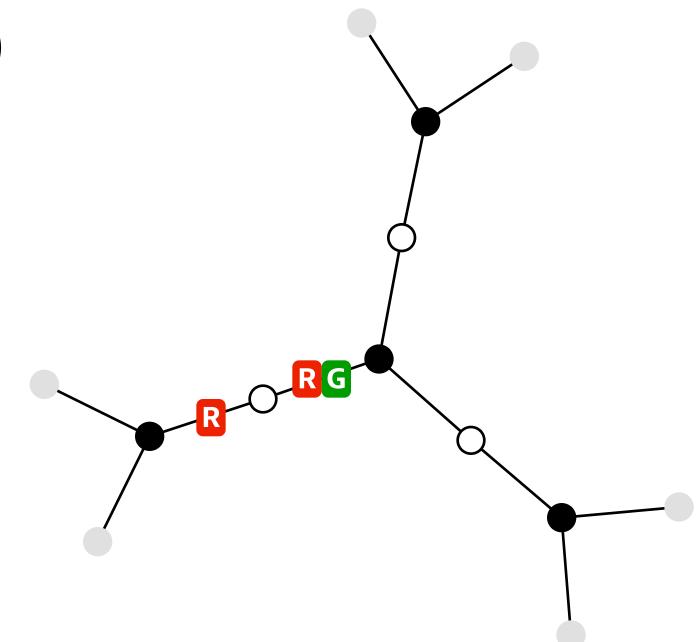
$X_1 = re(X_0)$: labels R, G, B

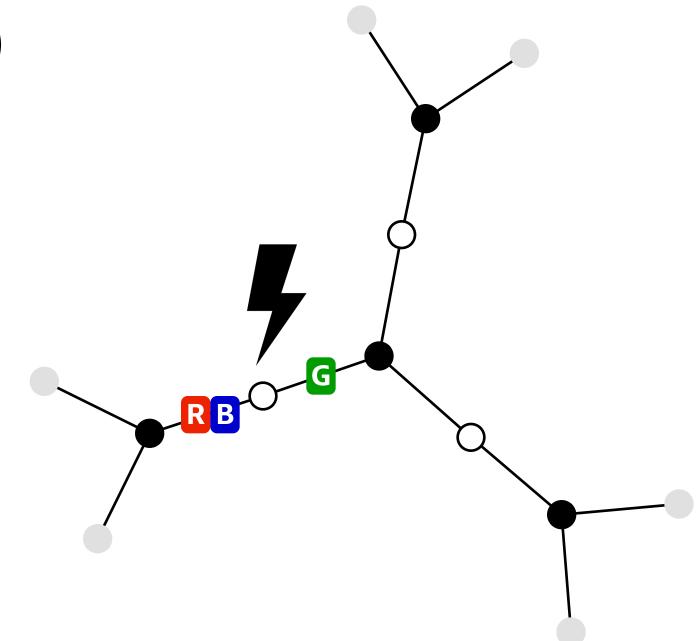
- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

$X_2 = re(X_1)$: labels R, G, B, RG, RB, GB, RGB

- active (deg 3): empty intersection
- passive (deg 2): non-empty intersection







- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

$X_1 = re(X_0)$: labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

$X_2 = re(X_1)$: labels R, G, B, RG, RB, GB, RGB

- active (deg 3): empty intersection
- passive (deg 2): non-empty intersection

Solvable in 0 rounds

- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

T=2

 $X_1 = re(X_0)$: labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

T = 1

 $X_2 = re(X_1)$: labels R, G, B, RG, RB, GB, RGB

- active (deg 3): empty intersection
- passive (deg 2): non-empty intersection

T = 0

Summary

- Meta-algorithm: round elimination
- Many recent lower bounds are based on RE
- Also used to show quantum advantage
 - by construction: easy for quantum
 - by RE: hard for classical
- Open: when is it "complete"?