Deterministic constructions for pair-isolating families

Juha Harviainen

Frontier Friday, October 17, 2025

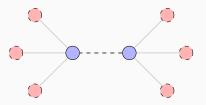
Pair-isolating family (PIF)

Input: Universe U of n elements, positive integer k

Output: Family $\mathcal Q$ of subsets of U such that for all x,y,z_1,z_2,\ldots,z_k , exists $Q\in\mathcal Q$ with $x,y\in Q$ and $z_1,z_2,\ldots,z_k\not\in Q$

Example: A PIF with n = 4, k = 1:

$$\{1,2,3\},\{1,2,4\},\{1,3,4\}, \text{ and } \{2,3,4\}$$


Constructions

- PIF of size $\mathcal{O}(k^3 \log n/k)$ exists by probabilistic argument¹
- No deterministic polytime construction known
- \bullet Pseudorandom $(n,k,k^2)\text{-splitters}$ give only a size bound $k^6\log n$
 - Family of colorings f of U into k^2 colors such that for all subsets S of k elements exists an injective coloring $f|_S$

¹ Christian Konrad, Conor O'Sullivan, Victor Traistaru: Graph Reconstruction via MIS Queries. ITCS 2025.

Motivation

- Consider the GRAPH RECONSTRUCTION problem
- ullet Given vertex set U of a graph G, figure out its hidden structure
- Only indirect access to edges through an oracle
- ullet Oracle outputs a maximal independent set (MIS) of G[Q]
- \bullet For non-adjacent $x,y\in Q$ whose neighbors are not in Q, both x and y are in all MISs of G[Q]

Problems

Input: Universe U of n elements, positive integer k

Output: Family Q of subsets of U such that for all $x, y, z_1, z_2, \ldots, z_k$, exists $Q \in Q$ with $x, y \in Q$ and $z_1, z_2, \ldots, z_k \notin Q$

Problems:

- Show existence of a PIF of size $\mathcal{O}(k^3 \log n/k)$
- Give an explicit construction of a PIF of size $\mathcal{O}(k^3 \log n/k)$