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Related work: Generic PTAS and specialized exact
e van Kreveld and Loffler (2008, 2010):

min/max perimeter/area convex hull of “imprecise points”
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e Javad et al. (2010); Jia and Jiang (2017)
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e Dumitrescu and Jiang (2012)

min perimeter intersecting polygon _ yeley) O(1/£2/3)
for segments / convex polygons PTAS: £ +2 n

min perim. int. pol. of concave polygons ——>> NP-hard

Is the problem of computing a minimum-perimeter intersecting
polygon of a set of segments NP-hard?
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Theorem
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Theorem

Given n line segments, there is an O(n” logn) time algorithm to compute their
minimum perimeter intersecting polygon.

Is the problem of computing a minimum-perimeter intersecting
polygon of a set of segments NP-hard? —» No, unless P=NP

Theorem

Given convex polygons of total complexity n and € > 0, there is an
O(n'"log(1/g) + n'l/e?4) time (1 + )-approximation (i.e., FPTAS) for their
minimum area convex intersecting polygon.



Problem(s) to consider now

Problem 1. Given n pairs of points in R?, find the minimum perimeter or
minimum area convex polygon that contains at least one point from each pair.

— NP-hard from vertex cover
Can we get O(1)-approximation? What about an (F)PTAS?

Problem 2. Given n pairs of points in R? where each pair share either z- or
y-coordinates, find the minimum perimeter/minimum area convex polygon that
contains at least one point from each pair.

Is this poly-time solvable?

Problem 3. Given n axis-parallel unit squares in R?, find the minimum perimeter/minimum
area convex polygon that covers at least half of each square.

No idea about the complexity here! Stochastic approximation?

Problem 4. Given n convex objects in R?, find the minimum volume/minimum surface area
convex polytope that intersects all objects.

Is this NP-hard?
What objects allow PTAS via coresets?



FPTAS for min perimeter intersecting
polygon of convex objects
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Natural ldea:

The min bounding box of OPT is a constant-approximation, let's find it!

For each orientation v among O(1/¢) options:
e Compute the min perimeter feasible rectangle parallel to v.

Solved with an LP.
Return the min perimeter rectangle R found so far

Will R cover some (1 + ¢)-approximation of OPT?

Lemma (Dumitrescu and Jiang)

Either R is a (1 + €)-approximate solution, or there is an optimum within a
square o of side length 3per(R) concentric to R.
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Observation

The convex hull of the grid cells containing the vertices of OPT has perimeter
at most (1 + ¢) times bigger.

It is sufficient to compute the optimum grid polygon.
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Min perimeter FPTAS wrap-up

Subproblems for each fixed vy,ot and each v, w:

(from O(1/e) x O(1/e) grid)

Alv, w] =

the minimum length of a convex chain I' from vy, to w whose last
edge is vw and such that all objects in S(v, w) intersect conv(I)
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Exact algorithm for min perimeter
intersecting polygon of segments
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Floating tours and “orderings”

Some or all vertices of OPT are
not segment endpoints! \
C

No way to discretize! opt

Lemma (Dror et al.)

Given a points p,q and a sequence hq, ..., h, of half-planes, in poly time we can
find the shortest “order-respecting”’ path from p to ¢ visiting these half-planes.
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Some or all vertices of OPT are

Floating tours and “orderings”

not segment endpoints!

No way to discretize!

Lemma (Dror et al.)
Given a points p,q and a sequence hq, ..., h, of half-planes, in poly time we can

find the shortest

“order-respecting’

\ .

opt

path from p to ¢ visiting these half-planes.

gntains P = D0sP1,P2;- -+, Pn>Pnt1 = q Where p; € hy and p; <X, pit1

Any interval of p;'s may coincide.
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Gridless DP with subroutine for floating sections

ldea: DP where we 'jump’ between neighboring segment endpoints of OPT

Two subroutines:

floating no segment endpoints between u and v
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Gridless DP with subroutine for floating sections

ldea: DP where we 'jump’ between neighboring segment endpoints of OPT

Two subroutines:

floating no segment endpoints between u and v
Lemma
Given u,v and k segments S, there are k£ half-planes bounded by segments of S
named hq,..., h; in angular order of their normals, s.t. OPT visits these
half-planes in order. The half-plane optimum for u, hq, ..., hg,v by Dror et al.

is also feasible for the segments.
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Conclusion

Results:
e FPTAS for min perimeter
int. pol. of convex objects
e exact polynomial for min perimeter
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convex int. pol. of convex polygons
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FPTAS for min area convex intersecting

polygon: the spiky case
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